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1. INTRODUCTION

Social behavior is a pervasive feature of animal life (Alexander, 1974;
Wilson, 1975; Davies, Krebs, & West, 2012; Alcock, 2013; Dugatkin, 2013).
This ubiquity suggests that an animal’s social environment will often play a
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critical role in influencing the development and expression of their behavior,
as well as its fitness outcomes (Maynard Smith, 1982; Montiglio, Ferrari, &
Reéale, 2013; Stamps & Groothuis, 2010). Animal social groups are often
characterized by complex, dynamic, and nonrandom patterns of social rela-
tionships (Croft, James, & Krause, 2008; Sih, Hanser, & McHugh, 2009;
Davies et al., 2012; Alcock, 2013; Dugatkin, 2013). Therefore, in order
to fully understand the evolution of social behavior, these aspects of social
structure must be explicitly incorporated into models of animal behavior.
Opver the past few decades, behavioral ecologists have become increasingly
cognizant of this fact. This recognition has led to fascinating novel insights
in the study of social behavior and continues to generate new, potentially
very important, hypotheses that are ripe for testing.

Social network theory provides both a conceptual framework and the
analytical tools to explore the interplay between individual behavior, pop-
ulation structure, and population-level processes (Croft et al., 2008). Starting
in the 1930s, social network theory has been widely used in sociology to
study human relationships and social organization (Moreno, 1934; Lewin,
1951; Scott, 2000). More recently, these approaches have been applied
toward the study of nonhuman social systems (Croft et al., 2008; Whitehead,
2008).

Social network theory views a social group as a system of interconnected
elements which are usually—though not always—individuals (Newman,
2003). A social network can be graphically depicted as a collection of nodes,
where each node represents an individual within the group. Social interac-
tions or associations between two individuals are denoted by an edge con-
necting their two nodes together. Nodes can be assigned attributes—e.g.,
sex, body size, personality type—corresponding to the individual they
represent. Edges, too, can vary in a number of properties. For example,
edges can be weighted to indicate the relative frequency or intensity of a
relationship, such as how often two individuals copulated, or directed to
indicate asymmetric interactions—e.g., individual A groomed B, but not
vice versa. The pattern of edges connecting nodes together, combined
with the attributes possessed by the nodes and edges, makes up a group’s
social network.

Social network analysis (SNA) provides researchers with a wide variety
of tools to explore different aspects of network dynamics, structure, and
function. The structure of a social network can be described using a multi-
tude of quantitative network measures that capture different aspects of
social structure at the level of the dyad, the individual, and the population
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(see examples in: Box 1; Croft et al., 2008; Wey, Blumstein, Shen, &
Jordan, 2008; Whitehead, 2008). Networks often possess emergent proper-
ties arising from the complex ways in which nodes can interact with one
another (Bradbury & Vehrencamp, 2011). Mathematicians have con-
structed several types of network models to better understand these emer-
gent properties, their function in real-world networks, and how these
networks form and evolve over time (Newman, 2003). These models
can then be tapped by social network analysts for a number of purposes.
For example, observed network measures can be compared to those gener-
ated from a simulated network to identify significant departures from null
expectations, thereby revealing potentially important aspects of a popula-
tion’s social organization (Croft et al., 2008). Network modeling can also
be used to determine the causal factors—e.g., individual behavior, environ-
mental conditions—that drive observed network structure (Newman,
2003; Pinter-Wollman et al., 2014). Furthermore, a social network pro-
vides the substrate upon which population-level processes—e.g., disease
transmission, information flow, or the emergence and maintenance of
cooperation—may play out. Understanding the dynamics and structure
of a population’s social network provides us with predictive power with
respect to these processes and can enhance our understanding of how social
organization influences individual behavior (e.g., Croft et al., 2006; Hoppitt
& Laland, 2013; Wilson et al., 2014).

SNA ofters several advantages to behavioral ecologists when combined
with more traditional methods of studying social structure and behavior.
For one, SNA provides a holistic framework that directly links individual
behavior to population structure. By population, we refer to a set of poten-
tially interacting individuals in which the majority of interactions are among
its members (Whitehead, 2008); in practical terms, the population refers to
all the nodes making up a given social network. The ability of SNA to inte-
grate individual behavior and population structure allows for a more sophis-
ticated exploration of questions at both levels; many behaviors can only be
fully understood when placed within the social context of the entire popu-
lation. For example, the spread of social information, diseases, or parasites
through a population depends not only on whom an individual directly
interacts with, but also with whom their social partners interact (Godfrey,
Bull, James, & Murray, 2009; Hoppitt & Laland, 2013; VanderWaal, Atwill,
Isbell, & McCowan, 2014).

SNA also provides behavioral ecologists with a complex and detailed
view of social structure applicable to a myriad of species and behavioral
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Box 1 Terminology of Social Network Analysis

Social network theory views a social group as a system of interconnected indi-
viduals (Newman, 2003). Social network analysis (SNA) uses a variety of tools—
e.g., visualization, descriptive measures, modeling, and simulations—to explore
the dynamics that form a social network, the structure of that network, and the
consequences of that structure for processes occurring over the network and the
behavior of individuals within it. These analyses can scale from the individual
level up to that of the population.

A social network can be visually represented as a series of nodes (also:
vertices) representing individuals connected by lines (also: edges, ties) repre-
senting social relationships between two connected individuals. This visual rep-
resentation is also known as a sociogram or graph. Ties can be unweighted
(also: binary), where a tie between two nodes simply indicates the presence
of a relationship (e.g., grooming), or weighted, where ties indicate the strength
or frequency of an interaction (e.g., the number of times grooming occurred).
Ties can also be bidirectional for symmetrical or reciprocated interactions, as
is often the case for proximity, or they can be directional when interactions
are asymmetrical or unreciprocated, such as if individual A groomed, but was
never groomed by, individual B.

In addition to visual representation, a social network can also be represented
as a sociomatrix, defined as the matrix of association or interaction measures
between each pair of individuals in the population. Most quantitative network
analyses are performed using this matrix.

Throughout this review, we use the term social structure to refer to the
quality, content, and patterning of social relationships within a population
(Hinde, 1976). The population will be defined as the collection of potentially
interacting individuals on which a particular social network is based. A commu-
nity is a set of nodes that are more densely interconnected to one another than
they are to the wider network. The extent to which communities play an impor-
tant role in dividing up a population can be assessed via Newman'’s (2004)
modularity measure, which takes the difference between the proportion of total
weights or edges connecting individuals within communities and the proportion
expected if individuals associated at random.

A variety of network measures are available to describe different aspects of
an individual’s pattern of connectedness. Often, individual measures can be
averaged across all individuals in the population—or across a class of individ-
ual—to provide population- or class-wide measures of social structure. Below,
we introduce several commonly used network metrics and provide references
in which they have been applied and/or where formulas for their calculation
can be found.

Degree: the total number of connections a node has. In-degree and
out-degree can be quantified for directional ties. For example, an individual’s
in-degree could be the number of social partners that have groomed it, while
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Box 1 Terminology of Social Network Analysis (cont'd)

its out-degree would be the number of social partners it has groomed. Degree
provides a measure of how well connected an individual is in its network—as
well as its potential importance to overall network structure—based on its direct
social partners.

Strength: the total weight of all ties connected to a node. In-strength and
out-strength can be calculated for directional, weighted ties. Strength is the cor-
responding measure for weighted networks that degree is for binary ones.
Strength also serves as a measure of gregariousness (Whitehead, 2008).

Clustering Coefficient: measures the extent to which a node’s network
neighbors are also connected with one another. The clustering coefficient aver-
aged over the whole network provides a measure of how cliquish a network is;
networks with high clustering are made up of highly interconnected social units
(see Newman, 2003; Holme, Park, Kim, & Edling, 2007; Whitehead, 2008).

Eigenvector Centrality: a measure of how well connected a node is, taking
into account not only the number and strength of direct connections, but also
how well connected that node’s neighbors are. Unlike degree or strength, eigen-
vector centrality also takes indirect connections into account. Computationally,
eigenvector centrality is obtained from the first eigenvector of the sociomatrix
(see Newman, 2004; Whitehead, 2008).

Reach: a measure of indirect connectedness; in a binary network, it measures
the number of nodes n or fewer steps away from the focal node. See Whitehead
(2008) for an example of how reach can be calculated for a weighted network.
This measure might be particularly useful when a researcher is interested in
the possibility of the spread of a behavioral trait or a type of interaction—e.g.,
agonistic behavior between individuals A and B causes B to direct agonistic
behavior toward individual C (see Flack et al., 2006; Whitehead, 2008).

Path Length: the number of edges on the shortest pathway between two
individuals. Path length measures how well connected two nodes are with
each other.

Betweenness: the number of shortest path lengths between pairs of nodes in
the network that pass through the focal node. Individuals that have high between-
ness link together many individuals in the network and can therefore have partic-
ularly important effects on the flow of information, disease, or resources through a
population. For example, imagine two clusters of individuals where the only
connection between these clusters passes through a single intermediate individ-
ual. If a novel behavior arises in one cluster and spreads via social learning, the
only way for that trait to reach the other cluster is through that intermediate
individual (see Freeman, 1979; Lusseau & Newman, 2004; Whitehead, 2008).

Information Centrality: measures a similar property as betweenness, but
also takes into account longer pathways weighted by the inverse of their length
(see Stephenson & Zelen, 1989; McDonald, 2007; Vital & Martins, 2011, 2013).

(Continued)
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Box 1 Terminology of Social Network Analysis (cont'd)

By viewing social groups as a system of interconnected nodes, social
network theory highlights the potential for emergent properties to arise at
the population level as a consequence of the complex patterns of relationships
between individuals. Emergent properties are not predictable by considering
each contributing factor in isolation from one another (Bradbury & Vehrencamp,
2011). In network terms, the structural properties of a network usually cannot be
assessed by measuring the dyadic relationships of its constituent members in
isolation. Only when these same relationships are allowed to interact with one
another in the context of the whole population are we able to properly assess
the structure and function of a network. Examples of emergent network proper-
ties include: population-wide resilience to loss of members (e.g., Lusseau, 2003),
the formation of stable dominance hierarchies (e.g., Shizuka & McDonald, 2012),
multitiered social structures (e.g., VanderWaal, Wand, et al., 2014), and the rate at
which socially learned behaviors spread through a population (e.g., Whitehead &
Lusseau, 2012; Aplin et al,, 2015).

milieus. In this review, we define social structure as the nature, quality, and
patterning of social relationships within a population, where a relationship
summarizes the content, quality, and patterning of interactions between
two individuals (Hinde, 1976); following Whitehead (2008), we use the
terms social structure, social organization, social system, and society inter-
changeably. SNA incorporates information on individual behavioral varia-
tion and offers a wealth of network measures which provide an objective
means of quantifying a population’s social structure. This approach can com-
plement conventional methods of describing animal societies—e.g., via
group size, demography, mating system, or division of labor—that often
downplay the variation and complexity of intragroup relationships or are
only useful for specific taxonomic subgroups (Wilson, 1975; Wey et al.,
2008; Whitehead, 2008). Furthermore, these network descriptors can facil-
itate comparative studies between populations and species to better under-
stand how social structure and behavior is shaped by ecology and
evolutionary history.

In addition to casting new light on old problems, a social network
approach can highlight previously unconsidered or neglected social pro-
cesses. If a social network is a system of interconnected nodes, then the
potential exists for interactions between those nodes to involve nonlinear
elements—e.g., competition, interference, or cooperation—which, in
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turn, may generate emergent properties (Couzin, Krause, James, Ruxton, &
Franks, 2002; Sumpter, 2006; Bradbury & Vehrencamp, 2011). The poten-
tial for animal social networks to facilitate emergent social phenomena has
been traditionally underappreciated (Bradbury & Vehrencamp, 2014).
The establishment of linear dominance hierarchies (e.g., Shizuka &
McDonald, 2012), collective decision-making (e.g., Sueur, Deneubourg,
& Petit, 2012), and the collective motion of animal groups (Bode, Wood,
& Franks, 2011a) are all classic examples of emergent social processes; in
each case, our understanding of the phenomenon has been enhanced by
adopting a network-based approach.

Network theory is being simultaneously developed in a number of fields,
including statistical physics, sociology, molecular biology, and computer sci-
ence. As a result, the field is changing at a rapid pace, with concepts,
approaches, and measures developed in one context often finding use in
another. While not all developments can—or should—be applied toward
the study of animal societies (James, Croft, & Krause, 2009), this rush of
novel ideas from outside sources is sure to enrich behavioral ecology.

Our goal in this review is threefold. First, we will trace the history of the
study of nonhuman social structure from early ethological ideas to modern
social network theory. In so doing, we shall see that the fundamental ques-
tions and topics dealt with by social analyses have changed very little over
time. However, the development of new conceptual frameworks and
analytical techniques, as well as extensive cross-pollination from other disci-
plines, has allowed behavioral biologists to increasingly embrace the com-
plexities seen in the natural world. Next, we will outline the concepts
behind modern social network theory and discuss some of the new insights
it has provided behavioral ecologists over the past decade. Here, we focus on
social learning, collective movement and decision-making, animal personal-
ities, and animal cooperation. While this by no means represents an exhaus-
tive list of the potential topics to which SNA has been—or can be—applied,
the above behaviors and phenomena possess many features—e.g., indirect
effects, dependence on population structure, emergent properties—that
network-based approaches are especially well suited to handle. Third, and
finally, we will highlight intriguing new avenues of research as advancing
technology and statistical methods allow researchers to address more
nuanced questions regarding social behavior than ever before.

Just as SNA in behavioral ecology developed from earlier approaches to
studying population structure and social behavior, SNA itself is evolving.
Indeed, SNA has experienced an influx of new ideas and applications
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over the past decade, as well as generated a wealth of novel insights. Since it
has been several years since a number of reviews on the subject (Krause,
Croft, & James, 2007; Croft et al., 2008; Wey et al., 2008; Whitehead,
2008; Sih et al., 2009), we feel the time is right to revisit it and review
many of its recent developments. In this way, we hope to serve as a concep-
tual introduction to SNA for behavioral ecologists and a source of inspiration
for future research.

S 2. A HISTORICAL PERSPECTIVE ON THE STUDY OF
ANIMAL SOCIAL STRUCTURE

Drawing on developments from ethology, sociology, primatology,
statistical physics, and behavioral ecology, the history of SNA in nonhuman
systems is a rich one. While a comprehensive treatment is not possible here,
we have distilled what we feel are the major developments leading up to the
application of modern network analysis in behavioral ecology. The intro-
duction to Whitehead (2008) and the review by Brent, Lehmann, and
Ramos-Fernandez (2011) provide more on this subject, with the latter
dealing specifically with the study of nonhuman primate social structure.
We do not review here the extensive sociological literature on network
analysis except where it explicitly intersects with our primary objective—
i.e., examining the evolution of network analysis in nonhuman systems.
Interested readers should instead refer to several excellent treatments
of that subject (Wasserman & Faust, 1994; Scott, 2000; Freeman, 2004;
Borgatti, Mehra, Brass, & Labianca, 2009; Scott & Carrington, 2011).

2.1 Early Approaches

The evolutionary and ecological importance of animal social structure was
formally recognized as early as the late nineteenth century (Crook, 1970;
Whitehead, 2008). In 1878, Espinas proposed that animal societies were
not simply random assemblages of individuals, but rather possessed structure
and persisted as distinct entities over time (Espinas, 1878). Espinas argued
that variation in animal social structures was related to ecological conditions
rather than phylogenetic history. For example, the territories of carnivorous
or piscivorous birds were often more defined and better defended than those
of other avian species, but these territorial boundaries would break down
during periods of high resource abundance. Espinas further argued that
animal societies possessed emergent, group-level properties that arose
from the complex web of social interactions within a population. He
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even suggested that animal societies could be influenced by natural selection
and evolve as entities in their own right.

Petrucci (1905, 1906) discussed animal territories and social organization
in relation to individual, familial, and societal requirements, though he was
careful to note that lower levels need not be present for higher levels to be in
place—i.e., a society can form independently of familial concerns, while a
family can be considered a social group in its own right. Like Espinas, Pet-
rucci noted a correlation between environmental conditions and animal
social structure, suggesting selection pressures played a role in shaping social
organization. These early ideas lay fallow for some time before being redis-
covered in the mid-twentieth century, in part due to neither author being
biologists by trade, as well as the fact that contemporary biologists of the
time were not particularly interested in such questions (Crook, 1970).

The first comprehensive attempt to place nonhuman social behavior
within a larger conceptual framework came with the birth of ethology.
For the most part, discrete social behaviors were believed to be innate and
under control of special “centers” within the brain (Tinbergen, 1953).
Opver time, action-specific energy built up in these centers, requiring release
which was provided by the presence or behavior of conspecifics. Lorenz
(1937) likened the phenomenon to that of a lock and key. Natural selection
shaped species to behaviorally respond in appropriate ways to unique com-
binations of stimuli (i.e., the “key”) to which their brain was attuned (i.e., an
innate perceptory pattern or the “lock”). While this system was believed to
apply to any stimulus—response relationship, when the releasing stimulus
involved a conspecific—i.e., a kumpan in Lorenz’s terminology—
signaler—receiver coevolution was possible over evolutionary time. This
coevolutionary process could then give rise to specialized morphological
structures and stereotyped motor patterns as seen, for example, in many
avian courtship rituals. These morphologies and behaviors presumably
evolved for the explicit purpose of influencing conspecifics.

To an early ethologist, social organization was simply the sum of the
innate stimulus—response relationships corresponding to conspecifics
(Tinbergen, 1953). Little consideration was given at the time to questions
of group composition and how relationships were patterned within a group,
nor how these structural elements might influence social behavior both
between group members and over the course of an individual’s life. Rather,
dyadic interactions had been primarily studied as isolated phenomena
detached from their wider social environment (Beer, 1976; Hinde, 1982).
Intra- and interindividual variation in behavior was downplayed; instead,
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innate, species-specific stereotyped behavior patterns were emphasized
(Hinde, 1982).

This situation began to change in the 1950s as researchers started to ques-
tion ethology’s highly mechanistic explanations for behavior, as well as its
tendency to neglect the full gamut of factors that could influence behavioral
development and expression (Hinde, 1959; Kennedy, 1954; Lehrman,
1953). More explicit consideration was given to how genetic, ecological,
and social factors interacted to produce variation in social structures and
behavior (McBride, 1964; Lack, 1968). This transition came about in part
due to recognition of significant intraspecies variability in primate social
behavior that was not well explained by a system of innate, inherited
releasing mechanisms (Crook, 1970). For example, harkening back to ideas
raised by Espinas, studies found that vervet monkeys (Chlorocebus pygerythrus)
living on a small island with rich food sources demonstrated territorial
behavior not observed in vervet groups living in larger areas with sparser
resources (Crook & Gartlan, 1966). The ecological conditions experienced
by a group were an important determinant of social structure, while the
ontogeny and expression of an individual’s social behavior were critically
influenced by both the ecological and social contexts experienced by that
individual (McBride, 1964; Crook, 1970).

2.2 Searching for a Conceptual Framework

As interest in describing and comparing animal social structures between and
within species grew, researchers recognized the need for a common frame-
work within which they could work. C. R. Carpenter (1942a, 1942b,
1952) was one of the first to consider nonhuman primate social structure
in a comparative sense. He developed species-specific models that described
the spatial arrangement of individuals as determined by individual- and class-
level patterns of affiliation and avoidance, though his work garnered little
interest at the time (Sade, 1972). Drawing from prior classification schemes
of social behavior in both sociology and ethology (Scott, 1945; Bales,
1951), Thompson (1958) sketched out a potential comparative framework
of social structure that distinguished between social interactions that had
either a positive or negative influence on group unity. Layered atop of this
would be characteristics of the actors and recipients, such as sex or kinship,
whether the interactions involved in- or out-group members, and their func-
tion (e.g., foraging, reproduction). The sum of these interactions formed the
structure of a group, which could be characterized by: (1) the number of
group members, (2) their density, (3) their cohesiveness—that is, the physical
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proximity of group members, (4) the coordination exhibited among mem-
bers when carrying out various tasks, and (5) group stability and permeability.

Noting the failure of earlier attempts to classify animal societies as result-
ing from an overly reductionist approach or a lack of generality by focusing
too closely on taxon-specific social traits—e.g., eusociality, mating system,
life cycles—E. O. Wilson advocated that researchers instead focus on social
qualities that could be universally applied toward any study system (Wilson,
1975). He expanded on Thompson’s (1958) list, devising a set of 10 qualities
by which researchers could describe social structure: (1) group size, (2)
demography, (3) cohesiveness, (4) amount and patterns of connectedness,
(5) permeability, (6) compartmentalization—that is, the extent to which
subgroups act as one unit, (7) role differentiation, (8) coordination of
behavior, (9) information flow, and (10) fraction of time devoted to social
behavior. Today, SNA allows researchers to study many of these quali-
ties—e.g., cohesiveness, connectedness, compartmentalization, behavioral
coordination, and information flow—under one integrated framework
(Whitehead, 2008).

Behavioral ecologists, excluding those that worked with primates, were
slow to adopt many of these social qualities (Whitehead, 2008); nonprimate
social structures were primarily described by group size and demography
(e.g., Jarman, 1974; Brosset, 1976). This stemmed both from a lack of
analytical tools, as well as the misguided assumption that only primates
had social systems that were sufficiently complex—e.g., involving individual
recognition—to warrant such studies (Whitehead, 1997, 2008). Even cogni-
tively advanced and highly social animals, such as cetaceans, were dismissed
as having a relatively simple social organization (Gaskin, 1982). Primatolo-
gists, however, forged ahead with a number of approaches to describing,
classifying, and comparing social systems (Silk, 2007; Brent et al., 2011).

Because sociologists also study primates—albeit usually focusing solely
on humans—it is not all that surprising that there is a rich tradition of
importing methods developed in sociology to study nonhuman primate
social structure (Roney & Maestripieri, 2003). A particularly profitable
import from sociology was the sociometric approach. Developed in the
1930s, sociometry sought to quantitatively describe the structure of human
groups, and the positions of individuals within those groups, through appli-
cation of mathematical graph theory (Moreno, 1934; Lewin, 1951). The
pattern of social relationships between group members determined overall social
structure and could be depicted as a set of nodes connected by edges—i.e., a
sociogram (Box 1) (Moreno, 1934; Scott, 2000). Sociometric analyses
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usually took the form of creating matrices that quantified some type of inter-
action between each pair of individuals in a group and used quantitative
measures to describe the resulting pattern of social relationships. These
analyses could be applied toward potentially any type of interaction, such
as aggression, trade, affiliation, or communication.

Drawing from these sociometric ideas, ethologist R. A. Hinde (1976)
sought to provide a unifying conceptual framework for studies of primate
social structure, though he also recognized its potential utility for nonpri-
mate animals as well. The framework he proposed had three levels: interac-
tions, relationships, and social structure, each of which influenced, and was
influenced by, the other two levels (Figure 1). Interactions involve specific
instances in which two individuals do something together or in which an
individual directs an action toward another individual—e.g., two baboons

STRUCTURE

structure feeds back i"/__
on relationships R

RELATIONSHIPS

& ¥ structure feeds back
/ i i oninteractions

relationships feed back
on interact ions

INTERACTIONS

types of interaction

Figure 1 A simplification of Figure 1 from Hinde (1976) depicting a framework for the
description of animal social structure. Successive interactions between two individuals
make up their relationship, while the pattern of relationships within a population
determines social structure. Feedbacks can occur between each level; for example,
structure can influence the types of interactions likely to occur between two individ-
uals. The relationship of two individuals accounts for all types of social interactions
that have occurred between them—e.g., grooming, copulation, agonistic behavior—
as well as the frequency and temporal patterning of those interactions. Reprinted
with permission from: Brent et al. (2011). Social network analysis in the study of nonhuman
primates: a historical perspective. American Journal of Primatology, 73, 720—730.
Copyright © 2011 John Wiley and Sons. Originally adapted from: Hinde (1976).
Interactions, relationships, and social structure. Man, 11, 1—17. Adaptation reprinted here
with permission from John Wiley and Sons, copyright © 1976.
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grooming one another or two fish shoaling together. Repeated interactions
over time between two individuals form the basis of their relationship.
Description of a relationship includes not only what two individuals do
together, but how those interactions are patterned—e.g., the frequencies
and timing of interactions, as well as the effect one type of interaction can
have on another. Taken together, the nature and patterns of relationships
within a group make up the social structure of that group. New properties
emerge at each of Hinde’s three levels—interactions, relationships, and
structure—that are not present in the component units making up the lower
levels. For example, the nature of an interaction results from the behavior of
both individuals involved, each of which can act in a variety of ways
depending on the identity of their partner. Hinde also discussed how various
factors, such as kinship, sex, or age, might be expected to influence relation-
ship patterns.

By clarifying the links between interactions, relationships, and the emer-
gence of social structure, Hinde (1976) provided a conceptual framework
that linked individual behavior to population structure and vice versa. In
doing so, he underscored the importance of studying social behavior within
the context of the whole population, as population structure could feed
back to influence the nature of social interactions and relationships. Hinde’s
framework has proven itself to be widely applicable (e.g., Whitehead, 2008)
and it was influential in prompting further development of sociometric
approaches in nonhuman animals—e.g., block models (Pearl & Schulman,
1983)—as well as other forms of social analyses—e.g., ordination methods
and lagged association rates (Kappeler, 1993; Whitehead, 1997; Whitehead
& Dutfault, 1999). Sociometry in particular was an important precursor to
modern SNA (Brent et al., 2011), though it had some crucial limitations
which we highlight below.

2.3 The Development of Sociometric Approaches in
Primates

Sociometric approaches such as those advocated by Hinde (1976) were
initially applied primarily to nonhuman primates and proved a fertile ground
for researchers. For example, presenting social data as a sociogram allowed
important, and sometimes nonintuitive, features of social structure to be
highlighted in a much more accessible format as compared to data matrices.
An early application of this technique to primate research was Sade’s (1965)
depiction of rhesus macaque (Macaca mulatta) grooming relationships as a
network of nodes connected by lines indicating the direction and frequency
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of grooming interactions between two individuals (Figure 2). Sociograms
have been widely used to depict primate social relationships including:
grooming (e.g., Soczka, 1974; Seyfarth, 1976, 1977; Cheney, 1978a;
Fairbanks, 1980; Hanby, 1980b; Seyfarth, 1980; Pearl & Schulman, 1983;
Mitani, 1986; Chepko-Sade, Reitz, & Sade, 1989; Nakagawa, 1992), prox-
imity (Fairbanks, 1980; Hanby, 1980a; Seyfarth, 1980; Nakagawa, 1992),
agonism (Hanby, 1980b; Pearl & Schulman, 1983), play (Soczka, 1974;
Cheney, 1978b; Pearl & Schulman, 1983), and copulations (Cheney,
1978a; Pearl & Schulman, 1983). While there is a limit to the amount of
usable information that can be effectively conveyed in a sociogram, they
remain an invaluable graphical tool for SNA.

Figure 2 Sociogram of a rhesus macaque (Macaca mulatta) grooming network origi-
nally published by Sade (1965). Circles indicate females and triangles represent males.
The lines between individuals indicate that grooming has occurred between these in-
dividuals; the thickness of the line is proportional to the frequency of grooming inter-
actions. The arrows depict the direction of grooming—e.g., individual 1960 groomed,
but was not groomed by, individual 1961. Reprinted with permission from: Brent et al.
(2011). Social network analysis in the study of nonhuman primates: a historical perspective.
American Journal of Primatology, 73, 720—730. Copyright © 2011 John Wiley and Sons.
Originally adapted from: Sade (1965). Some aspects of parent-offspring and sibling re-
lations in a group of rhesus monkeys, with a discussion of grooming. American Journal of
Physical Anthropology, 23, 1—17. Adaptation reprinted here with permission from John
Wiley and Sons, copyright © 1965.
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As an example of the utility of the sociometric approach, we turn to the
rich history of studies on primate allogrooming (e.g., Sade, 1965; Kummer,
1968; Seyfarth, 1977). The structuring of grooming relationships was of
particular interest to primatologists both because of the relatively high
frequency at which grooming interactions occurred relative to other primate
social behaviors and because other important behaviors and processes were
suspected to be influenced by this structure—e.g., coalitionary support and
the likelihood of receiving aggression (R hine, 1973; Seyfarth, 1980; Seyfarth
& Cheney, 1984). These studies revealed that grooming interactions were
nonrandomly distributed within primate groups and that this structure was
driven by a variety of social factors. For example, fewer than 15% of the
possible dyads accounted for 62% of the grooming interactions in one group
of rhesus macaques (M. mulatta), indicating a highly structured grooming
network based on kinship (Sade, 1965). High-ranking females were
preferred grooming recipients relative to low-ranking females in several spe-
cies, including Chacma baboons (Papio ursinus) (Cheney, 1978a; Seyfarth,
1976), stump-tailed macaques (Macaca arctoides) (Rhine, 1973), and vervet
monkeys (C. pygerythrus) (Seyfarth, 1980). However, females tended to
instead groom individuals of adjacent social rank to themselves due to a
number of influences—e.g., constraints imposed by higher-ranking individ-
uals, kin-based preferences (Sade, 1965, 1972; Seyfarth, 1976; Cheney,
1978a; Seyfarth, 1980)—thereby demonstrating how studying dyadic rela-
tionships in isolation from the larger social environment can be misleading.
Furthermore, sudden increases in grooming received were often observed
for lactating females with infants, highlighting the dynamic elements of
social structure (e.g., Seyfarth, 1976; Cheney, 1978a; Seyfarth, 1980).

Most sociometric analyses either focused on only one type of interaction
(e.g., grooming) or examined multiple behaviors independent of one
another. However, animals are embedded simultaneously within multiple
networks, each of which might exert influence on the others. Pearl and
Schulman (1983) attempted to combine multiple social networks into a sin-
gle network through their application of block models to two social groups
of thesus macaques (M. mulatta). Sociomatrices for grooming, play, mating
behaviors, proximity, threat displays, and fear grimaces were constructed
and combined into one large matrix. Macaques were then partitioned
into “blocks” such that the relationships individuals within a block share
with those outside of their block are largely similar to one another. The
behavioral profiles of these blocks were then compared within and between
groups. A comparison of how different types of interaction related to one
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another—for example, the relationship between proximity and play net-
works—suggested common factors influenced social structure in both
groups despite dramatically different demographic profiles within, and
ecological conditions experienced by, each population. One group was
made up of about 25 wild individuals in the mountains of Pakistan, while
the other was a large, free-ranging group containing about 100 individuals
on the Caribbean island of Cayo Santiago. While these early block model
studies were useful for considering multiple network types simultaneously,
as well as potentially facilitating comparative studies of social structure,
they tended to discard a great deal of information regarding an individual’s
network position that was of great interest to behavioral biologists. Block
modeling has not been widely used in behavioral ecology, though it has
seen continued use and development in other fields, including molecular
biology (e.g., Wang & Qian, 2014) and sociology (e.g., Ziberna, 2014).

Even though it lacked a robust, quantitative methodology, sociometric
analyses in primates presaged modern SNA in many ways. As in SNA, these
early studies constructed a representation of social structure based on
repeated interactions between group members, used numerical measures
to describe this structure, and could graphically depict structural patterns
using a sociogram. Also like SNA, sociometry sought to understand
the reciprocal interplay between individual behavior and overall group
structure (e.g., Sade, 1972; Hinde, 1976; Seyfarth, 1977; Hanby, 1980b;
Sade, Altmann, Loy, Hausfater, & Breuggeman, 1988).

Sociometric studies were hamstrung by a lack of computational power,
as well as by methodological issues (Brent et al., 2011). While Hinde (1976)
had provided a useful conceptual framework for visualizing social structure,
tools for quantitatively analyzing this structure lagged behind (Pearl &
Schulman, 1983). Some network measures such as degree (i.e., the number
of social partners an individual has) and strength (i.e., the frequency of inter-
action) were easily calculated by hand and were frequently used. Utilization
of most other network metrics, however, had to await greater availability of
computing power (though see: Sade, 1972; Kaplan & Zucker, 1980; Sade
et al., 1988). Methods for assessing the statistical significance of noninde-
pendent, relational data, such as is used in network studies, were infre-
quently applied (Sade & Dow, 1994). Comparing social structures
between groups, populations, and species remained fraught with challenge
(Sade, 1972; Chepko-Sade et al., 1989; Whitehead, 1997). Further, socio-
matrices and sociograms represented a static image of a network that in
reality was likely to be constantly changing as a result of environmental,
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social, and demographic factors (Sade, 1965; Hanby, 1980b). While many of
these issues remain challenges for SNA, progress has since been made on
several of them.

A more important difference between modern SNA and these early
sociometric studies is that SNA goes beyond simply describing and depicting
network structure: SNA attempts to understand how that structure forms,
what properties it might possess, and its function in ecological and evolu-
tionary processes (e.g., Pinter-Wollman et al., 2014). For example, modemn
SNA might ask how network structure influences the flow of information
through the network or how it impacts the use of behavioral strategies in
the population. Furthermore, SNA emphasizes the potential for social struc-
ture to possess emergent properties, such as resilience in terms of network
structure and function when faced with removal of individuals from the pop-
ulation (e.g., Lusseau, 2003). In these ways, as well as others, modern SNA
encompasses much of the sociometric approach, but also amends it signifi-
cantly by adding new concepts, questions, and techniques. Before we discuss
the use of modern SNA in behavioral ecology, however, we first turn to some
of the important contributions to social analyses made by nonprimatologists.

2.4 The Study of Social Structure Embraces Nonprimates

In the 1980s and 1990s, behavioral ecologists (many of whom were trained
by primatologists) began to apply sociometric methods and related
approaches to nonprimate species, including: ungulates (Clutton-Brock,
Guinness, & Albon, 1982; Le Pendu, Briedermann, Gerard, & Maublanc,
1995), cetaceans (Bigg, Olesiuk, Ellis, Ford, & Balcomb, 1990; Connor,
Smolker, & Richards, 1992), and birds (Ekman, 1979; Myers, 1983). Con-
trary to earlier claims, it rapidly became apparent that nonprimates also
possessed a great deal of complexity in their social interactions and
organization. For example, male bottlenose dolphins (Tursiops spp.) were
demonstrated to preferentially associate with one or two other males, form-
ing long-term alliances through which members gained increased access to
females (Connor et al., 1992). In some instances, two of these alliances
would even cooperate, forming a superalliance that facilitated joint theft
of a female from another alliance (Connor et al., 1992; Connor, Heithaus,
& Barre, 1999). Many ungulate species were shown to possess seasonal vari-
ability in social organization, as well as nonrandom, preferential associations
between individuals based on age and sex (e.g., Le Pendu et al., 1995;
Underwood, 1981). By expanding work to nonprimate social systems,
behavioral ecologists were able to study a wider variety of life histories,
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mating systems, demographics, ecological contexts, and other factors rele-
vant to social structure than they could previously. How this variation trans-
lated into variation in social structure—and how that, in turn, influenced the
fitness outcomes of social behavior—provided innumerable avenues for
fascinating research.

Analytical techniques were developed which could deal both with the
much larger population sizes present in many nonprimate species relative
to primate populations, as well as interaction or association data that were
often much sparser than that available in primate studies (Whitehead &
Dufault, 1999). For example, lagged association rates and other similar tech-
niques allowed researchers to describe the temporal patterning of social
relationships in a population. These temporal patterns are an important
aspect of social structure, as the same average interaction rate between
two individuals can have quite different interpretations if interactions persist
at a low, but stable, frequency over time as compared to a high initial inter-
action frequency that quickly falls to zero. Myers (1983) calculated the likeli-
hood of sanderling (Calidris alba) pairs remaining together over time intervals
of hours, days, months, and years, finding that associations broke up quickly
as birds moved throughout the foraging area and that associations did not
persist over longer time periods. Underwood (1981) created what were basi-
cally survivor curves for the length of time two animals remained associated
with one another, and found that individual eland (Taurotragus oryx) were
often found together on consecutive days, but associations tended to quickly
deteriorate after that.

These two approaches were further developed by Whitehead (1995,
1997) as the lagged association rate which calculates the probability of asso-
ciation T time units since an earlier known association between two individ-
uals. While a significant amount of data are needed to confidently
characterize the temporal relationship for a particular dyad, the lagged asso-
ciation rate can be generalized over a class of individual, a community, or
an entire population (Whitehead, 2008). In doing so, it provides a powerful
approach that can be used even for species where social behaviors are difficult
to observe and specific individuals are encountered rarely and opportunisti-
cally—e.g., sperm whales (Physeter macrocephalus) (Whitehead, 1995, 2008).

2.5 The Advent of Modern Social Network Analysis in
Nonhuman Systems

It is difficult to draw a firm line dividing SNA from earlier sociometric
methods. While some authors appear to see a clear delineation between
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the work we have described above and SNA (Whitehead, 2008), others—
e.g., Croft et al. (2008)—see SNA as further development of these early
approaches that simultaneously embraces concepts, techniques, and meth-
odologies from a wide range of disciplines in which network approaches
have been applied, including sociology (Moreno, 1934; Homans, 1951;
Wasserman & Faust, 1994; Hanneman & Riddle, 2005), business (Levine,
1972), economics (Burt, 1988), ecology (Harary, 1961; Solé & Montoya,
2001), physics (Newman, 2003, 2004), and molecular biology (Rausher,
Miller, & Tiftin, 1999; MacCarthy, Seymour, & Pomiankowski, 2003;
Kollmann, Levdok, Bartholomé, Timmer, & Sourjik, 2005). While this
can occasionally lead to misapplication of concepts and analyses that are
not relevant when applied to animal groups (see James et al., 2009), it also
allows researchers to explore social structure from a number of angles in
order to better identify both the causal factors that drive observed patterns
and the consequences of those patterns (Croft et al., 2008).

The main conceptual difference between early network approaches,
such as sociometry, and modern SNA is that the latter emphasizes viewing
a social network as a system of interconnected nodes that has the potential to
generate complex properties and outcomes (Newman, 2003; Bradbury &
Vehrencamp, 2014). Modern SNA does not just use descriptive measures
to quantify individual- and population-level social structure, though that
certainly remains an important part (Croft et al., 2008): It also seeks to
understand the functional consequences of different types of network struc-
ture. SNA identifies emergent structural properties that arise from complex
patterns of social relationships and explores how these properties influence
individual behavior occurring within the network and social processes play-
ing out over it (Newman, 2003). SNA also tries to understand the ecological
factors and underlying social dynamics that result in the emergence of partic-
ular structural elements (e.g., Barabasi & Albert, 1999; Wilson et al., 2014).
To accomplish these goals, modern SNA has a wide array of tools at its
disposal, including: descriptive measures, network models, simulations,
and comparative approaches (e.g., Pinter-Wollman et al.,, 2014). While
we will define concepts and terminology in the body of the text as they
are used, readers can also refer to Box 1 where we provide definitions and
corresponding references.

An early study explicitly applying elements of modern social network
theory to nonhuman animals was Maryanski’s (1987) work on gorilla
(Gorilla gorilla) and chimpanzee (Pan troglodytes) social organization. She
used data from the literature to characterize the average relationship
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between different age—sex classes in chimpanzee and gorilla groups in terms
of strong or weak ties. Using this approach, Maryanski demonstrated simi-
larities between chimpanzee and gorilla social structure in that most individ-
uals maintained a handful of strong social ties, but the majority of their social
connections, though fairly weak, were distributed throughout the regional
population. This resulted in a large amount of interconnectedness at the
population level which could have facilitated the movement of individuals
and the transmission of social information throughout the population
(e.g., Granovetter, 1973). Maryanski contrasted this with baboon (Papio
spp.) groups where numerous strong ties existed within matrifocal social
groups, but intergroup connections were rare. Many of the themes of Mar-
yanski’s work—such as a focus on emergent population structure and its
implications for patterns of flow over the network—are shared by modern
SNA. Her approaches were largely descriptive, however, and lacked many
of the formal, quantitative elements embraced by network analysis today.
Indeed, the recent surge of interest in SNA has in part been driven by the
availability of modern computing power, as well as programs specifically
designed for SNA (e.g., Borgatti, Everett, & Freeman, 2002; Whitehead,
2009), thereby allowing researchers to go beyond simple network met-
rics—such as degree and strength—and to apply a more rigorous statistical
framework to their data (Croft et al., 2008; Brent et al., 2011).

A landmark paper that opened the floodgates for applying SNA to non-
primate species was David Lusseau’s application of these techniques to a bot-
tlenose dolphin (Tursiops spp.) population in Doubtful Sound, New
Zealand. Lusseau (2003) analyzed a population of 64 dolphins and found
a social network characterized by a high level of clustering—i.e., the
network was fairly cliquish in that an individual’s network neighbors were
also likely to be associated with one another (Box 1). Despite these strongly
associated subgroups, simulation studies in which randomly selected individ-
uals and all their connections were removed from the network demonstrated
the network’s resilience to perturbation. Numerous pathways connected
each dolphin to others in the population such that random removal of indi-
viduals did not fragment the larger network. Artificially constructed random
networks with the same number of nodes and links as the real network frag-
mented much faster into isolated subgroups when experiencing the same
level of random node removal. Targeted, nonrandom removal of especially
highly connected individuals had a greater effect on overall social structure,
but still did not fragment the network. Additional work on this population
has demonstrated the existence of smaller communities within the larger
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network, as well as the presence of particular individuals connecting these
communities together who could potentially have a disproportionate influ-
ence on transmission processes occurring over the network (Lusseau &
Newman, 2004; Lusseau, Whitehead, & Gero, 2008).

Lusseau’s (2003) study was a major step forward in animal SNA. Rather
than just describing the structure of the network, he utilized methods that
allowed him to make wider inferences regarding both its structure and func-
tion. For example, the structure of the dolphin network was compared to
that of random networks of equivalent size and density to emphasize poten-
tially important aspects of dolphin social organization. Further, in testing
whether particular pairs of dolphins were found together significantly
more often than expected by chance, the permutation methods used to
generate randomized networks maintained the underlying data struc-
ture—i.e., the observed group sizes and the number of times each individual
was observed. These methods provided a more realistic null model for the
observed data as compared to the node-label permutation methods more
commonly used by sociologists (James et al., 2009). In addition, Lusseau
focused on the emergent properties that could arise from network structure,
such as facilitating rapid flow of social information and providing resilience
in terms of network structure and function to the loss of population
members.

Croft, Krause, and James (2004) applied SNA to a wild Trinidadian
guppy (Poecilia reticulata) population in the Northern Range Mountains of
Trinidad. All adult guppies were collected from a pool within the Arima
River, individually marked with colored elastomer, and released back into
the same pool. Shoals were then recaptured over a 7-day period to construct
the social network. Croft et al. (2004) demonstrated that though guppies
exhibit a highly dynamic, fission—fusion social system in which shoal mem-
bership can change rapidly as shoals meet with and diverge from each other,
this population still possessed a highly structured social network. In partic-
ular, the network had a short mean path length and a high mean clustering
coefficient, suggesting information and disease could spread rapidly
throughout the population. The path length between two individuals is
the smallest number of edges that lie between them on the network—
e.g., a direct connection means a path length of 1—while the clustering
coefficient measures the extent to which an individual’s associates are them-
selves linked (Box 1). Persistent associations were present in this population
between pairs of females even after accounting for body-size preferences,
suggesting shoaling decisions could be based on active partner choice. These
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associations persisted over several days, despite the fact that guppy shoals
disperse at night and reform anew each morning (Croft et al., 2003). While
a preference for familiar individuals had been demonstrated in guppies under
laboratory conditions using binary choice trials (Griffiths & Magurran,
1997), Croft et al. (2004) provided compelling evidence that such prefer-
ences can also be expressed in wild populations.

Over the past decade, SNA has become an increasingly popular tech-
nique to probe aspects of social structure and to study behavior within
the larger social context in which animals are embedded (Croft et al.,
2008; Whitehead, 2008; Sih et al., 2009; Pinter-Wollman et al., 2014).
It has been used in a number of taxa and applied to topics spanning the
range of behavioral ecology (Wey et al., 2008; Sih et al., 2009). For
example, SNA has allowed for detailed descriptions of social structure to
be made for numerous species, including ants (e.g., Odontomachus hastatus)
(Jeanson, 2012), blacktip reef sharks (Carcharhinus melanopterus) (Mourier,
Vercelloni, & Planes, 2012), and reticulated giraftes (Giraffa camelopardalis)
(VanderWaal, Wang, McCowan, Fushing, & Isbell, 2014). Other studies
have used SNA to examine the links between social structure and behavior,
exploring topics that include song development in brown-headed cow-
birds (Molothrus ater) (Miller, King, & West, 2008) and how behavioral
type influences the composition and structure of cooperative breeding
groups in a cichlid species (Neolamprologus pulcher) (Schurch, Rothenberger,
& Heg, 2010).

SNA has also been used to explore how social structure influences pop-
ulation-level processes. Transmission pathways for the transfer of food items,
and their implications for the spread of pathogens, have been explored in
honeybee hives (Apis spp.) (Naug, 2008), while the structure of networks
based on refuge sharing were found to be important predictors of parasite
load and infection probability in both gidgee skinks (Egernia stokesii) and
sleepy lizards (Tiliqgua rugosa) (Godfrey et al., 2009; Leu, Kappeler, & Bull,
2010). Taking advantage of a 10-year data set on long-tailed manakins (Chi-
roxiphia linearis), David McDonald has employed SNA to address topics such
as the importance of early life social connections in predicting later social rise
and reproductive success (McDonald, 2007), and the extent to which kin
selection has played a role in the evolution of obligate cooperative relation-
ships in this species (McDonald, 2009).

SNA allows us to address several of the aspects of sociality laid out by
Wilson (1975) in an integrated, quantitative framework that can facilitate
objective comparison between individuals, populations, and species (Faust
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& Skvoretz, 2002; Kelley, Morrell, Inskip, Krause, & Croft, 2011; Wilson,
Krause, Dingemanse, & Krause, 2013). Even more exciting, as other fields
utilizing network analysis develop in parallel with behavioral ecology,
cross-pollination of concepts and techniques have occurred and will
continue to, thereby enriching our field with an influx of new hypotheses
and methods to test them. While network analysis in behavioral ecology
has been largely descriptive up until now, that too is beginning to change
as experimental manipulation, new technologies, advanced statistical tech-
niques, and simulation modeling allow researchers to transition into
an explicitly predictive and explanatory framework (Pinter-Wollman
et al., 2014). We will touch on several of these new developments and
approaches throughout the remainder of the review as we turn now
to recent work that has been done using SNA and explore how a
network-based approach has given us new insights into problems both
old and new.

g 3. SOCIAL NETWORK ANALYSIS AND TOPICS IN
BEHAVIORAL ECOLOGY

Sih et al. (2009) listed four concepts embraced by SNA that are of
particular importance to behavioral ecology: (1) individuals differ in their
social experiences, (2) indirect connections can be as important as direct
ones, (3) individuals differ in the extent of their influence within the social
network, and (4) the social network structure in one context can carry over
to influence the network structure in other contexts. These four concepts
offer a useful framework through which to appreciate the contributions
SNA has made to our understanding of various topics in behavioral ecology,
including: dominance hierarchies (Shizuka & McDonald, 2012; Dey,
Reddon, O’Connor, & Balshine, 2013), sexual selection (Oh & Badyaev,
2010), disease ecology (Cross et al., 2004; Godfrey et al., 2009; VanderWaal,
Artwill, et al., 2014), and the influence of social structure on fitness (Royle,
Pike, Heeb, Richner, & Kolliker, 2012; Wey & Blumstein, 2012). Here, we
have chosen to focus on SNA as it relates to: (1) social learning and
information diffusion, (2) collective movement and decision-making, (3)
animal personalities, and (4) cooperation. These topics were selected because
we believe they provide excellent examples of how our understanding of
social behavior can be enhanced by explicitly incorporating information
on social structure and dynamics into models and analyses of animal
behavior.
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3.1 Social Learning and Culture

The ability of animals to learn environmentally relevant information and
novel behavior patterns through observation of other individuals—or the
by-products of their behavior—is termed social learning (Hoppitt & Laland,
2013). Classic examples include social learning of potato washing in Japanese
macaques (Macaca fuscata) (Kawai, 1965), milk-bottle opening in great tits
(Parus major) (Fisher & Hinde, 1949), and transter of novel food preferences
through breath odor in Norway rats (Rattus norvegicus) (Galef, Kennett, &
Wigmore, 1984).

Early theoretical models exploring the adaptive value of social learning
assumed a well-mixed population in which social learners copied others in
a more or less random fashion (Boyd & Richerson, 1985; Rogers, 1988).
The results of these models suggested that social learning did not automati-
cally increase individual fitness as was generally assumed. Rather, negative fre-
quency dependence for social learning resulted in a polymorphic equilibrium
where the average fitness of social and asocial learners was equivalent (Rogers,
1988). This finding, known as Rogers’ “paradox,” flew in the face of com-
mon assumptions that the ability to use social learning must enhance fitness,
using the success and growth of human populations as evidence. One way
out of the “paradox” was by recognizing that social learning usually does
not occur as random copying of others within a homogeneous population.
Rather, humans and other animals are more likely to acquire social informa-
tion in highly selective ways that are influenced by demonstrator characteris-
tics, as well as by differential access to those demonstrators (Coussi-Korbel &
Fragaszy, 1995; Laland, 2004; Hoppitt & Laland, 2013). In short, when
exploring social learning dynamics, the social network structure matters.

3.1.1 Theoretical Models of Social Learning and Culture in
Structured Populations

Recent theoretical studies have begun incorporating elements of social
structure and learning strategies into their models to better explore how
cultural traits spread through and persist in a population, the conditions
that influence cultural trait diversity, and the fitness consequences of these
traits. Given the obvious importance of culture in our societies, most work
on these topics has focused on humans. From this body of research, it is clear
that social structure can greatly influence how quickly, and to what extent,
cultural information transmits through a population. For example, the
mean network degree—i.e., the average number of connections an
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individual has—predicts the ultimate spread of a cultural trait, while the
extent to which a network is formed of smaller, semi-isolated subgroups
influences how quickly an equilibrium state is reached through the loss
of neutral cultural variants (Holme & Newman, 2006; Li & Hui, 2008;
Meyers, Pourbohloul, Newman, Skowronski, & Brunham, 2005; Nardini,
Kozma, & Barrat, 2008).

Fewer researchers have modeled cultural dynamics in nonhuman systems
(Whitehead & Lusseau, 2012). Here, we will use the definition of culture as
socially learned behavior that is shared by members of a group (Laland &
Galef, 2009; Whitehead & Lusseau, 2012), though other definitions with
more stringent requirements have also been used in the literature (Laland
& Galef, 2009). Possible examples of nonhuman culture include nut
cracking in chimpanzees (P. troglodytes) (Boesch, Marchesi, Marchesi, Fruth,
& Joulian, 1994), potato washing in Japanese macaques (M. fuscata) (Kawai,
1965), and tool use in New Caledonian crows (Corvus moneduloides) (Hunt &
Gray, 2003) and bottlenose dolphins (Tursiops spp.) (Krutzen et al., 2005).
By simulating transmission over small social networks with varied structural
properties, researchers can gain insight into how putative cultural traits
might spread through animal societies.

Voelkl and Noé (2008) constructed artificial networks of varying resem-
blance to commonly observed natural social structures, as well as simulating
the real social network published in Sade’s (1972) study of rhesus macaques
(M. mulatta). When they examined transmission patterns over these net-
works, they found transmission rates were highest in a homogeneous
network where every individual was equally connected to every other.
A chain network where each individual had at most two connections
possessed the slowest transmission rates. These highly artificial networks
are extreme versions of egalitarian and hierarchical social structures respec-
tively. Between these two extremes, networks with greater resemblance
to real social networks observed for nonhuman primates had intermediate
transmission rates. The decrease in transmission rate as networks became
more hierarchical is consistent with empirical evidence that suggests that
dominance relationships can impede the spread of social traits (e.g.,
Coussi-Korbel & Fragaszy, 1995; Huffman, 1996; Kendal et al., 2010).

Voelkl and Noé (2010) simulated information propagation in over 70
nonhuman primate sociopositive social networks—for example, networks
based on grooming or social tolerance—previously published in the litera-
ture. In addition to using the unaltered social network, each network was
also modified by: (1) shuffling the weighted edges between nodes to
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randomize the connection pattern while maintaining the original network’s
distribution of edge weights, (2) creating an unweighted, binary network
that maintained the connection pattern, and (3) creating a well-mixed,
homogeneous network where each individual was connected to every other
individual and all network ties were of equal strength (Figure 3). Informa-
tion spread fastest in the well-mixed networks and slowest in the unaltered,
original networks. This suggests that social transmission rates were hindered
by both the pattern of social connections, as well as the unequal distribution
of connection strength.
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Figure 3 The four network types used in Voelkl and Noé’s (2010) simulation study of
social transmission in primate networks. (a) A network based on an actual primate
social network where edge weights represent interaction frequency, (b) a network
which maintains the connection pattern of the original network, but removes weight-
ing so that all connections are of equal strength, (c) a network which maintains the dis-
tribution of edge weights from the original network, but the connections between
nodes are randomized, and (d) a complete network where all possible connections
are present and of equal weight. Reprinted with permission from: Voelkl and Noé
(2010). Simulation of information propagation in real-life primate networks: longevity,
fecundity, fidelity. Behavioral Ecology and Sociobiology, 64, 1449—1459. Copyright ©
2010 Springer Science + Business Media.
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Whitehead and Lusseau (2012) recently simulated a number of social
learning rules within networks of varying structure to explore the relative
influence of both factors on cultural diversity. As networks became more
modular, cultural diversity increased. Modularity was calculated as the differ-
ence between the proportion of total edge weights that connect individuals
within the same subgroup and the expected proportion when assuming
individuals associate at random (Newman, 2004). This score ranges from
0 for undifterentiated populations without clustering to 1 for a highly difter-
entiated population where individuals only interact within, rather than
between, subgroups. Within highly modular populations, clusters of indi-
viduals that were socially isolated from the larger population tended to
embark on independent behavioral trajectories. This pattern was found
regardless of the learning rule being used. Social structure might impose
an upper limit on the overall behavioral diversity a network can realize,
regardless of the learning mechanisms at work. The authors suggest that
these predictions could be tested by comparing behavioral diversity and
social structure in wild populations thought to exhibit cultural traditions,
such as primates, cetaceans, and songbirds. Taken together, the above studies
suggest that as a population becomes more structured—that is, less homoge-
neous—and/or access to other individuals becomes more limited, transmis-
sion occurs at a slower rate through the population with the added eftect of
possibly increasing the overall diversity of whatever it is that is being trans-
mitted—e.g., novel behaviors, diseases.

The above simulation studies allow for generation of predictions which
can then be tested in actual animal populations by quantifying the popula-
tion’s social structure, introducing a novel trait, and observing its spread
(Voelkl & Nog, 2008; Whitehead & Lusseau, 2012). Potentially valuable
new methods to accomplish these tasks have begun to be developed (e.g.,
network-based diffusion analysis (NBDA); see below). An area for future
inquiry is to study these processes over dynamic networks in which connec-
tion patterns and strengths can shift over time (Whitehead & Lusseau, 2012).
For example, if connections between parents and offspring begin strong in
life and weaken as the offspring ages, vertical transmission rates should be
highest early in an individual’s life.

3.1.2 Network-Based Diffusion Methods

An early approach used to study social learning in freely interacting animal
groups was diffusion curve analysis, in which the cumulative number of
individuals that possess a trait over time is plotted. Traditionally, the shape
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of the diffusion curve was used as an indicator of asocial or social learning
(e.g., Lefebvre, 1995). An r-shaped curve was taken as evidence of asocial
learning as, at the population level, it is indicative of individuals learning a
trait at a roughly constant rate. Social learning was inferred from an s-shaped
curve. The s-shape suggests few individuals possess the trait early on, result-
ing in a dearth of demonstrators and slow overall trait acquisition. As more
individuals acquire the trait, more demonstrators are available to provide
additional opportunities for naive individuals to learn; under these condi-
tions, rapid spread of the trait is predicted. Eventually, there are few unin-
formed individuals left and the overall rate of acquisition slows.

Using traditional diffusion curve analysis to understand social learning is
problematic. These analyses assume all members of a population are equally
likely to transmit or receive information and that the population is structured
homogeneously with all individuals equally likely to interact with one
another (Reader, 2000). Additionally, the shape of the curve is not as indic-
ative of underlying learning processes as was initially assumed. Social
learning may not result in a simple, s-shaped curve if populations exhibit
some level of substructuring where the trait spreads quickly within, but
slowly between, subgroups (Laland & Kendal, 2003; Reader, 2004). Simi-
larly, if information is more likely to be learned from some individuals
than others—e.g., due to transmission biases or directed social learning—
the shape of the curve changes. Furthermore, an s-shaped curve can arise
from asocial phenomena such as: neophobia, multistep tasks, or if variation
in asocial learning rates exists between individuals (Reader, 2004; Hoppitt,
Kandler, Kendal, & Laland, 2010).

To address these concerns, a new form of diffusion analysis has recently
been developed. NBDA infers social learning if the spread of a trait through
a population appears to follow the social network: that is, that social infor-
mation is more likely to spread quickly between animals tightly linked
in the network (Coussi-Korbel & Fragaszy, 1995; Franz & Nunn, 2009;
Hoppitt & Laland, 2013). NBDA can be based on either the order in which
individuals acquired the trait or the actual times of acquisition. These
models can be used to compare strength of social transmission between
contexts (e.g., open vs complex environments: Webster, Atton, Hoppitt,
& Laland, 2013) or to test hypotheses related to different social learning stra-
tegies thought to be at work in a population (e.g., copying familiar individ-
uals: Atton, Galef, Hoppitt, Webster, & Laland, 2014; vertical transmission:
Allen, Weinrich, Hoppitt, & Rendell, 2013). Factors predicted to influence
asocial rates of acquisition, such as neophobia or boldness, can also be
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incorporated into the models to control for their effects (Hoppitt, Boogert,
& Laland, 2010).

While still 2 new technique, NBDA has already been employed in both
laboratory and field studies on a number of species, including: threespine
sticklebacks (Gasterosteus aculeatus) (Atton, Hoppitt, Webster, Galef, &
Laland, 2012; Webster et al., 2013; Atton et al., 2014), multiple species
of Paridae songbirds (Aplin, Farine, Morand-Ferron, & Sheldon, 2012;
Aplin et al., 2015), ring-tailed lemurs (Lemur catta) (Kendal et al., 2010),
red-fronted lemurs (Eulemur rufifrons) (Schnoell & Fichtel, 2012), and
humpback whales (Megaptera novaeangliae) (Allen et al., 2013). So far
NBDA has been used primarily to study the spread of foraging information
related to locating and accessing food, but it has the potential to address
nearly any behaviorally transmitted trait—e.g., vocal traditions in cetaceans
(Noad, Cato, Bryden, Jenner, & Jenner, 2000), mate-choice copying
(Dugatkin, 1992), or defensive behaviors (Magurran & Higham, 1988;
Mineka & Cook, 1988).

NBDA ofters several important advantages for studying social transmis-
sion. Many social learning studies place individuals in binary choice tests
following observation of informed demonstrators. While such studies have
been useful in establishing the mechanisms and behavioral strategies by
which individuals acquire and use social information (Galef, 2009; Hoppitt
& Laland, 2013), animals are often tested under highly artificial conditions
and restricted from acting within normal social contexts. NBDA’s primary
benefit is that it allows researchers to study social learning in naturalistic con-
texts with freely interacting groups of animals. Additionally, ecological,
genetic, and social factors thought to influence the spread of a behavior
can be considered simultaneously through inclusion of the appropriate vari-
ables in the NBDA model. This provides an attractive alternative to the
ethnographic method which instead attempts to infer social learning in
the wild through ruling out alternative genetic and ecological explanations
(Laland & Janik, 2006). For example, lobtail feeding in humpback whales
might be a behavioral specialization for foraging on a particular prey species:
sand lance (Ammodytes americanus); the initial occurrence of this behavior in
the humpback population in the Gulf of Maine coincided with both an
increase in sand lance abundance and a dramatic decrease in the abundance
of another important prey species for humpbacks: herring (Clupea harengus).
Allen etal. (2013) found support using NBDA for both social transmission of
lobtail feeding and for ecological eftects—i.e., annual sand lance biomass—
influencing acquisition of the lobtail technique.
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One exciting possibility offered by NBDA that has only begun to be
explored is examining the use of social learning strategies under various
social and ecological conditions in freely interacting groups. For example,
Atton et al. (2014) found that familiarity between two sticklebacks (G. acu-
leatus) facilitated discovery of a novel food source. The pattern of informa-
tion acquisition in shoals made up of both familiar and unfamiliar fish was
best described by a network allowing information flow only between
familiar individuals; these results are largely consistent with a social learning
strategy of “copy familiar individuals” (Galef, 2009).

Aplin et al. (2015) found strong evidence for a conformist strategy (i.e.,
“copy the majority”) influencing the establishment and persistence of alter-
native, but functionally equivalent, novel behaviors in wild networks of
great tits (P. major). Demonstrators from each subpopulation were trained
in captivity to open a puzzle box with one of two options—pushing the
blue half of a sliding door to the right or the red half to the left—in order
to access the mealworms contained within. Demonstrators were then
released back into their original subpopulations. Puzzle boxes with both
options available were provided for each subpopulation and the timing
and pattern of problem-solving were monitored. NBDA found over-
whelming support for social transmission of these behaviors compared to
asocial learning; birds with strong connections to solvers were much more
likely to solve the task themselves. Despite both options—red and blue
doors—being available for use, birds usually first solved the task with the
option originally seeded into their subpopulation and continued to strongly
prefer this option even after learning of the alternative. When the puzzle
feeders were returned to the woods after a 9-month absence, each subpop-
ulation still preferred their initially seeded technique despite significant pop-
ulation turnover. A cultural tradition—that is, a socially learned behavior
shared within a group—appears to have been established in these popula-
tions, transmitted via the social network, and maintained through
conformist biases for at least two generations.

Finally, an important feature of NBDA is that estimates of the strength of
social transmission can be obtained. This is in contrast to earlier network-
based diffusion methods that simply compared a test statistic to a null distri-
bution generated with randomization techniques (e.g., Boogert, Reader,
Hoppitt, & Laland, 2008; Morrell et al., 2008). For example, one of the
approaches used in Boogert et al. (2008) used a weighted social network
and the order in which individuals acquired a behavior (i.e., the diftusion
chain). The average association strength between each individual and all
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those who preceded it in the diffusion chain was summed over all individuals
in the chain. This test statistic was then compared to a distribution of null
values generated using randomized diffusion chains. If the trait was socially
transmitted through strong network connections, the test statistic was
expected to be in the upper 2.5% of the distribution. However, this method
only indicates whether or not social transmission was likely occurring; it pro-
vides no estimates regarding the strength of social transmission. The effect
size estimates possible using the latest forms of NBDA can facilitate compar-
isons of the strength of social learning between different contexts, popula-
tions, and species to better identify conditions that promote or may have
selected for enhanced social transmission (e.g., Webster et al., 2013). It
might even be possible to predict future spread of information through a
population if given sufficient information on the effects of relevant factors
on social transmission rates. This could have ramifications for management
of wild and captive populations, such as seeding beneficial information or
training to the individuals most likely to facilitate its rapid spread (Makagon,
McCowan, & Mench, 2012).

Despite its potential utility, NBDA has weaknesses that require careful
consideration from researchers prior to applying it. While NBDA facili-
tates studies of social learning under wild conditions, the ability for
researchers to accurately identify when an individual has acquired the trait
of interest is critical. Observation errors regarding this information can
decrease the power of NBDA to detect social learning (Franz & Nunn,
2010). Analyses based only on the order of acquisition can be potentially
more resistant to these errors, but may also have less statistical power to
detect social learning than analyses that also incorporate information on
the time of acquisition (Franz & Nunn, 2010; Hoppitt, Boogert, et al.,
2010). Identifying an appropriate association measure is also critical.
Ideally, a measure should be selected that reflects the probability that infor-
mation will transmit between two individuals—e.g., a network based on
how often individuals feed together might be more appropriate when
considering the spread of foraging-related traits than a network based solely
on spatial proximity (Hoppitt, Boogert, et al., 2010; Hoppitt & Laland,
2013).

On a more conceptual note, NBDA uses a static network constructed
from aggregated observations of association or interaction. If transmission
processes occur at a fast rate relative to changes in network structure, then
NBDA is a powerful technique. If instead transmission processes and struc-
tural changes occur over similar timescales, then a more fine-grained view of
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social dynamics might be needed (Croft et al., 2008; Wilson et al., 2014).
Furthermore, if acquiring a trait changes an individual’s interaction patterns,
then a social network constructed prior to when an individual acquired a
trait might not accurately reflect its social relationships after trait acquisition.
A model allowing for a dynamic network that can change over time might
be more appropriate in this context (e.g., Blonder, Wey, Dornhaus, James,
& Sih, 2012). New approaches are being developed that could help address
some of these shortcomings; we will discuss a few of them—e.g., Markov
chain models, dynamic networks—later in the review.

In addition to diffusion studies per se, attempts have been made to link
particular network metrics with social learning. For example, high eigen-
vector centrality (Box 1) suggests an individual is well connected in its
network and might therefore experience increased access to beneficial
social information, resources, or mating opportunities. Formally, eigen-
vector centralities are taken from the first eigenvector of the matrix of
associations or edges (Newman, 2004). In practical terms, an individual
can have high eigenvector centrality if it has many connections in the
network—i.e., high degree or strength—or if'it is connected to individuals
who have many connections. In squirrel monkeys (Saimiri sciureus), an
individual’s eigenvector centrality predicted the likelihood of, and the
speed with which, it solved a foraging-related task when trained demon-
strators were introduced into the group (Claidiere, Messer, Hoppitt, &
Whiten, 2013).

Information centrality measures the extent to which one individual links
pairs of other individuals together, thereby providing an indicator of how
important an individual is in influencing the flow of information through
its network (Stephenson & Zelen, 1989). It is similar to the betweenness
of a node, but betweenness only counts the number of shortest paths
between pairs of nodes that pass through the node of interest (Freeman,
1979). In comparison, information centrality takes into account all possible
pathways weighted by the inverse of their length. Vital and Martins (2011)
found that individuals who were characterized by high information central-
ity were of greater importance to group function than noncentral individuals
in zebrafish (Danio rerio) shoals. Removal of these central fish disrupted the
ability of the group to learn foraging-related cues, while removal of other
fish had little effect (Vital & Martins, 2011). An intriguing direction for
future research is suggested by the strain-related difterences found in Vital
and Martins’ study which hint at underlying genetic bases to both zebrafish
social organization and learning.
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3.1.3 Transmission Dynamics Using Markov Chain Models
A recent development in the analysis of animal networks with important
implications for understanding transmission processes is the use of Markov
chain models which allow for exploration of the social dynamics that drive
the formation of a network (Wilson et al., 2014). Wilson et al. (2014) con-
ducted repeated focal follows of wild female guppies (P. reticulata) in their
native habitat of Trinidad, periodically recording whether or not the focal
fish was shoaling with another female and if so, with who. From these
observations, they constructed Markov chain models describing shoaling
dynamics, where the shoaling behavior of an individual at time ¢ + 1
depends solely on its behavioral state at time f, and each behavioral state—
e.g., shoaling, swimming alone—is associated with a unique set of transition
probabilities describing the likelihood of future states. Simulated outputs from
a number of Markov chain models were compared to the observed data to
assess goodness-of-fit (Figure 4). Wilson et al. (2014) found that the best-
fitting model had focal individuals selecting shoaling partners with individ-
ual-specific probabilities, suggesting active social preferences were at work
in this population. These Markov chain models were then used to generate
simulated networks whose structure was compared to that of real networks
constructed from the observed shoaling partner data. These comparisons
found that when models without individual-specific shoaling preferences
were used to generate simulated networks, the structure of these networks
diftered significantly from that of the real networks. This difference was not
found when models that included individual-specific shoaling preferences
were used instead to generate the simulated networks, suggesting these pref-
erences played an important role in determining population structure.
Wilson et al.’s (2014) Markov chain models can be used to analyze and
predict transmission processes over networks with a potentially high level of
accuracy. These models were used in a disease transmission simulation
where it was found that individual partner preferences slowed down infec-
tion rates relative to a model assuming a homogeneous social structure with
no partner preferences. For this approach to work, some knowledge is
needed regarding the length of time required for transmission to occur
between two individuals. Animals can then be observed at an appropriate
frequency to capture social dynamics at a fine enough scale to properly
model the transmission process of interest (e.g., information, disease, para-
sites). By constructing Markov chain models that explicitly incorporate
factors predicted to influence social learning dynamics, such as age, familiar-
ity, or kinship, predictions could potentially be made regarding the
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Figure 4 Markov chain models of Trinidadian guppy (Poecilia reticulata) shoaling
dynamics. (a) The simplest possible model where an individual can either be shoaling
(i) or alone (x). The probabilities of switching state are given by p, and ps, while the
probabilities of maintaining the same state are given by g, and gs. (b) An elaboration
of the simplest model, in which an additional term is included describing shoaling state
i in the presence of k possible partners. Individuals are selected as shoaling partners
with equal probabilities, and the focal individual remains with the current shoaling
partner with probability g;. An elaboration of this model which incorporates individ-
ual-specific shoaling preferences provided the best fit to the empirical data (see
text). Reprinted with permission from: Wilson et al. (2014). Dynamic social networks in
guppies (Poecilia reticulata). Behavioral Ecology and Sociobiology, 68, 915—925. Copy-
right © 2014 Springer Science + Business Media.

importance of various social learning strategies within a population (Laland,
2004; Hoppitt & Laland, 2013). This approach could also facilitate compar-
isons of social learning between populations and species.

The use of Markov chains in animal social network studies is still relatively
new and its effectiveness has not yet been extensively tested. For instance, it
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remains unclear to what extent population density might influence the tran-
sition probabilities of the Markov chains and consequently limit comparative
studies. Nevertheless, it offers an intriguing next step for modeling transmis-
sion dynamics over networks, as well as exploring the processes that shape
social structure. Wilson et al.’s (2014) approach could be especially appro-
priate for modeling social dynamics and network structure in animal species
where associations and interactions are often short-lived.

While using Markov chains to model network dynamics is relatively
unexplored in the behavioral ecology literature, it has a longer history of
use in sociology (Wasserman, 1977; Leenders, 1995; Snijders, 2001;
Snijders, van de Bunt, & Steglich, 2010; Pinter-Wollman et al., 2014).
For example, stochastic actor-based models can explore how characteristics
of actors, dyadic relationships between pairs of actors, and the actors’ posi-
tions in their network drive changes in network structure over time. These
models use a time series of networks, where the networks are constructed for
the same group of actors at each time point. Changes in network structure
between time points are modeled as a Markov process where future network
structure is determined only by the current state of the network, mediated
through the behavior of the nodes. The main difference between stochastic
actor-based models and the Markov chain models used by Wilson et al.
(2014) 1s that the former is modeling the changes between multiple observed
networks over time, while the latter attempts to identify the social dynamics
at work in a population and use them to infer the structure of the popula-
tion’s social network.

3.2 Collective Movement and Decision-making

In principle, large-scale, complex, and synchronized movement of animal
groups—e.g., fish shoals, bird flocks, insect swarms—might be the result
of self-organization based on simple behavioral rules played out at the local
level between adjacent group members (Sumpter, 2006). Interacting with
neighbors based on rules-of-thumb such as “avoid collisions” and “move
toward and align with conspecifics” can result in a cohesive and responsive
animal group that can potentially acquire information more eftectively than
alone individual could and rapidly disseminate that information to its mem-
bers (Couzin et al., 2002; Toannou, Couzin, James, Croft, & Krause, 2011).
Minor variation in these local rules can lead to rapid and discrete shifts in
group structure; for example, simulated fish shoals can shift from swarming
behavior to a torus structure and finally to parallel directional movement by
simply varying the range over which an individual aligns with group
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Figure 5 A model of collective motion. (a) An individual is centered within three zones
Theoretical Biology, 218, 1—11. Copyright © 2002 Elsevier.
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members (Figure 5) (Couzin et al., 2002). Each of these formations can be
characterized by its influence on group properties, such as cohesion or the
speed of information transmission between group members.

Most work on collective movement, however, has not considered how
individual-level rules might be influenced by the underlying social structure
of a group. Researchers have simply assumed that the same collective move-
ment rules apply to any conspecifics detected within an individual’s percep-
tual zone (Couzin et al.,, 2002; Hemelrijk & Hildenbrandt, 2008). Yet,
empirical work has shown that phenotypic assortment and social preferences
for particular individuals influence animal grouping patterns (e.g., Griftiths
& Magurran, 1997; Croft et al., 2009; Aplin et al., 2013). Incorporating
such preferences—embodied within a group’s social network—into models
of collective motion and decision-making will help to generate new, testable
predictions for the field (Bode et al., 2011a).

Research suggests that subtle behavioral variation is sufficient to consis-
tently influence spatial position in a moving group (Couzin et al., 2002);
variation in social preferences is predicted to have a similar effect (Bode,
Wood, & Franks, 2011b). In addition, if animals are more likely to be consis-
tently found in certain spatial locations within a group, this may facilitate the
development of social preferences between adjacent individuals (Bode et al.,
2011a). Differences in information status, speed of travel, behavior, and
other variables can result in passive assortment (Krause, Butlin, Peuhkuri,
& Pritchard, 2000; Reebs, 2000; Couzin et al., 2002), which might then
transform into active preferences expressed within the social network.

A caveat about the relationship between spatiotemporal proximity and an-
imal social networks is in order here. In many species and contexts, gathering a
good record of the interactions occurring between individuals can be prohib-
itively difficult (Whitehead, 2008). Social relationships in these networks are
often inferred based on the frequency of association instead. Whether two
animals are associating or not is usually based on group membership—i.e.,
“the gambit of the group” (Whitehead & Dufault, 1999)—where group is
defined as animals maintaining spatiotemporal proximity for primarily social
reasons. While spatiotemporal proximity often correlates with the likelihood
two animals will engage in some social interaction, animals might also group
for nonsocial reasons. For example, animals might aggregate around some
resource or environmental feature, such as a watering hole or roosting site
(Krause & Ruxton, 2002). In such circumstances, group membership pro-
vides much less, if any, meaningful information about social structure
(Whitehead, 2008). In other contexts, animals might group for social reasons,
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but “the gambit of the group” as it is normally implemented, such as through
use of a chain rule, can be misleading. For instance, it seems unlikely that
every herring (C. harengus) shares a meaningful social relationship within a
school of potentially thousands of individuals spread out over hundreds of
meters (Mackinson, 1999). Instead, it is more likely that an individual fish
would maintain many fewer—if any—persistent, social relationships and is
most likely to interact with the individuals immediately around it at any
one time—i.e., those within its perceptual zone (Couzin et al., 2002).
Many of the studies we review in this section distinguish between a network
of social preferences and the interactions that occur within an individual’s
perceptual zone (e.g., Bode et al., 2011a, 2011b). The former quantifies stable
preferences that change relatively slowly compared to interactions occurring
in the latter, which form and break as individuals move near to and away
from one another. Additionally, several of these studies, particularly those
dealing with group movement toward some resource, demonstrate how
the outcomes of self-organized, collective behavior can be influenced by a
combination of both social and nonsocial processes. We examine three
ways in which social network structure influences different aspects of collec-
tive behavior. The first considers collective motion in animal groups that are
not actively navigating toward some goal. The second section then considers
group navigation and leadership eftectiveness. Finally, we turn to topics
related to group decision-making and the initiation of group movement.

3.2.1 Collective Motion in Nonnavigating Groups

Simulations that incorporate social preferences which bias individual move-
ment toward or away from particular individuals have found that the spatial
arrangement of individuals within a moving group reflect the group’s social
network structure. Qiu and Hu (2010) constructed social networks with
weighted edges representing the relative influence each individual had
over one another’s movement decisions. During collective motion, individ-
ual movements were biased toward network neighbors that had greater
influence—i.e., stronger edge weights. When the social network resembled
a linear chain where each individual had a strong connection with only one
other individual, moving groups likewise assumed a linear formation
(Figure 6(a)). Conversely, where one or a few individuals had particularly
high centrality—i.e., they had many strong connections directed toward
them—relative to other group members, moving groups formed relatively
compact structures as socially peripheral individuals attempted to remain
close to these strongly connected, central individuals (Figure 6(b)).
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Figure 6 Network structure can influence the resulting spatial structure during agent-
based simulations of collective motion. (a) A linear network structure in which each in-
dividual shares a strong social connection with just one other individual results in a
linear formation during collective motion. (b) A highly centralized network structure
in which one individual possesses a greater number of strong social connections rela-
tive to other group members results in a compact, clustered formation during collective
motion. Reprinted with permission from: Qiu and Hu (2010). Modeling group structures in
pedestrian crowd simulation. Simulation Modelling Practice and Theory, 18, 190—205.
Copyright © 2010 Elsevier.

Hemelrijk and Kunz (2005) noted similar clustering around preferred
associations when they constructed a model incorporating social preferences
resembling familiar and unfamiliar associations, with the assumption that
familiar individuals preferred one another’s company. In their simulations,
distinct clusters of familiar individuals were detected within the moving col-
lective. Bode et al. (2011b) explored the influence of various social network
structures on collective movement in the absence of navigation. Socially
central individuals—i.e., those with numerous strong ties to others in the
network—were more likely to also occupy spatially central positions within
the moving group. Highly centralized networks that had one or two
“key”—i.e., socially central—individuals were found to be tightly cohesive
during collective motion. In contrast, strongly interconnected subgroups,
such as communities within the network, facilitated fragmentation of the
larger group. The most cohesive groups, however, were those that lacked
any strong connections, suggesting that a more homogeneous social struc-
ture facilitated cohesive collective motion.

3.2.2 Collective Navigation

If one or a few individuals possess accurate environmental information, they
can lead uninformed group members toward a target, such as a food source,
resulting in accurate group navigation (Couzin, Krause, Franks, & Levin,



40 Matthew J. Hasenjager and Lee Alan Dugatkin

2005). Bode, Franks, and Wood (2012) asked whether an underlying social
network expressing individual preferences influenced the ability of leaders to
guide group movement. Leaders in their simulations had a preferred direc-
tion—that is, they acted as if they were informed regarding the location of a
desired destination—while nonleaders had no preferred direction
(Figure 7(a)). Leaders also had to balance a nonsocial tendency to navigate
toward their preferred direction with a social tendency to respond to the
movements of group members. At one extreme, leaders only navigated,
with no regard for the behavior of group mates. At the other end, no nav-
igation occurred and the leader only moved according to local interaction
rules modified by social preferences. Navigational success for the leader
increased with its navigational tendency (Figure 7(b)). However, if leaders
paid too little attention to the behavior of group members (i.e., they focused
solely on navigation), group fragmentation could result (Figure 7(c)). Frag-
mentation became less likely when a leader had more and stronger social ties
to other group members—that is, when leaders possessed high network cen-
trality. The most effective collective navigation was achieved when leaders
had high centrality coupled with moderation in their navigational ten-
dencies (Figure 7(d)).

Although Bode, Franks, et al.’s (2012) models have not been explicitly
tested, some empirical results do support their general conclusions. Leader-
ship during flight in homing pigeon (Columba livia) groups can be influenced
by individual navigational experience and route fidelity (Freeman, Mann,
Guilford, & Biro, 2011; Flack, Pettit, Freeman, Guilford, & Biro, 2012)—
that is, those pigeons with higher navigational tendencies were more effec-
tive leaders. Vital and Martins (2013) quantified the social network structure
of small zebrafish (D. rerio) groups and identified “key” and “nonkey” fish
based on individual information centrality (see Box 1). In each group, either
a “key” or “nonkey” fish—i.e., those individuals with the highest or lowest
centrality respectively—was trained on how to reach a safe location when
faced with an aversive stimulus. When transferred back into their groups,
“key” individuals were better able to influence collective group avoidance
behavior than “nonkey” fish. Swaney, Kendal, Capon, Brown, and Laland
(2001) found that trained guppies (P. reficulata) that were familiar to the rest
of the group were better able to lead group mates toward a food source as
opposed to trained demonstrators that were unfamiliar to the group. The
most effective leaders, though, were the familiar guppies that were relatively
poorly trained, as the well-trained fish tended to leave their group mates
behind. This seems to parallel Bode, Franks, et al.’s (2012) finding that
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Figure 7 (a) The informed individual in gray has a navigational tendency, w, countered
by social tendencies, 1 — w. Arrows indicate social preferences, with stronger prefer-
ences indicated by thicker lines. (b) Navigational success of the leader increased with
w; as in-degree increased, a smaller w was needed for success. (c) The scale on the right
denotes the fraction of the total group that was found in the same cohesive group as
the leader. More fragmentation was observed as w increased, but this was countered to
some extent by higher leader in-degree. (d) The square root of the product of the mea-
sures from (b) and (c) provided a combined measure where high values indicated suc-
cessful group navigation. The most effective group navigation occurred when leaders
had high in-degree and moderate navigational tendencies. Reprinted with permission
from: Bode, Franks, et al. (2012). Leading from the front? Social networks in navigating
groups. Behavioral Ecology and Sociobiology, 66, 835—843. Copyright © 2012 Springer
Science + Business Media.
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individuals focused solely on navigation facilitate fragmentation of the larger
group, potentially by outpacing other group members and robbing them of
effective leadership.

In the absence of informed leaders, animal groups can still accomplish
cohesive and accurate navigation. Under what is known as the “many-
wrongs principle,” pooling imperfect individual navigational information
can facilitate collective navigation as individual errors are averaged out at
the group level (Simons, 2004). Bode, Wood, and Franks (2012) used sim-
ulations to examine how social network structure influenced such leaderless
group-level navigation. Each individual in the model moved based on both
innate, but imperfect, navigational tendencies toward the target direction, as
well as social tendencies toward nearby conspecifics. Social preferences were
determined by a network of strong and weak connections. Two models of
network formation were considered, with the placement of strong connec-
tions selected either (1) based on preferential attachment, resulting in a few,
very strongly connected nodes (Barabasi & Albert, 1999), or (2) at random.
To represent the absence of social structure, the control treatment used a
network where all individuals were connected to one another and all con-
nections were equally strong. Bode, Wood, et al. (2012) found that relative
to the control treatment, either type of social network acted to reduce group
navigation error when individuals were biased in favor of interacting with
conspecifics rather than following their own navigational knowledge.
Conversely, when individuals focused more on nonsocial navigation,
group-level accuracy was no longer influenced by the social network. Over-
all, these simulations suggest that over an evolutionary timescale, natural
selection could favor some level of social structure in group-living organisms
due to its facilitation of collective navigation.

The relative scarcity of work combining these two fields can be partially
traced to logistical and methodological limitations. It can be difficult enough
to track individual wild animals over course timescales, let alone record
the fine-grained details needed for studies of collective motion. Novel
automated tracking and recording systems are being developed that offer
opportunities to begin investigating these topics in greater detail by allowing
high-resolution data of individual identities, positions, and movements to be
collected for wild animal populations (e.g., Krause et al., 2013; Nagy et al.,
2013; Farine et al., 2014; Strandburg-Peshkin, Farine, Couzin, & Crofoot,
2014).

Researchers have only recently begun to cohesively integrate SNA with
studies of collective motion. Given the intriguing results of these initial
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studies, however, further synthesis of these fields is likely to greatly advance
our understanding of the underlying mechanics and dynamics of emergent
social behavior. Questions abound: how does the relationship between
social structure and information pooling during collective navigation vary
across ecological contexts (e.g., within a structurally complex environment)?
Does social structure mediate or hinder group cohesion when conflicts of
interest occur between group members? How do networks characterized
both by preferred and avoided relationships influence collective motion
and navigation? How are the costs and benefits of leadership balanced against
the costs and benefits of maintaining social relationships? Additionally,
comparative studies examining the interaction between social networks
and collective motion across contexts and between populations and species
will allow us to unravel the role natural selection plays in influencing emer-
gent social phenomena.

3.2.3 Initiation of Group Movement and Group Decision-making
To this point, we have only considered collective motion in continually
moving animal groups without considering how initiation of group move-
ment occurs. Another body of work uses the term collective movement to
refer to the sequence of events that include a predeparture period (some-
times with recruitment behaviors involved), initiation of movement, and
group movement if the initiator was successtul (Petit & Bon, 2010). In these
studies, the focus is on such questions as what individual characteristics are
possessed by successful initiators of group movement, and how do animals
decide whether to join a departing group or remain where they are?
Joining decisions during the initiation of collective movement have
been well studied in primate groups. Jacobs, Sueur, Deneubourg, and Petit
(2011) proposed several rules which brown lemurs (Eulemur fulvus fulvus)
might in principle follow in their decision-making process. Joining decisions
could be based on: (1) individual-specific needs and motivations, (2) the
identity or characteristics of the initial leader, (3) the total number of animals
who have joined, (4) the total number of kin who have joined, and (5) the
affiliative relationships shared with those who have joined. Agent-based sim-
ulations of brown lemur behavior found that decisions based on the affilia-
tive relationships shared with those who have joined best fit the data,
suggesting that the social network of affiliative behavior predicted group-
level movement patterns for brown lemurs. Similar results have been found
for Tonkean macaques (Macaca tonkeana) (Sueur, Petit, & Deneubourg,
2009, 2010), rhesus macaques (M. mulatta) (albeit modified by kinship
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patterns: Sueur et al., 2010), and in herds of heifers (Bos taurus) and ewe
lambs (Owis aries) (Ramseyer, Boissy, Thierry, & Dumont, 2009).

Sueur et al. (2012) further explored how collective movement patterns
and group decision-making style were influenced by social network struc-
ture by running agent-based simulations using networks varying in their
centralization. Highly centralized networks were dominated by one individ-
ual with the most and the strongest connections relative to other group
members. Specifically, these individuals possessed the highest eigenvector
centrality of the group (see Box 1). More decentralized networks were char-
acterized by less disparity in eigenvector centrality between the central indi-
vidual and its group mates until, in a completely decentralized network, all
group members were equally central. In highly centralized networks, the
central individual had the greatest recruitment success during initiation of
collective movement. As networks became less centralized, leadership effec-
tiveness became more evenly distributed in the group. Finally, in a
completely decentralized network, every individual was equally successful
as a leader. The interaction between social structure and decision-making
style was nonlinear, suggesting that the latter is an emergent property of
the former (Bradbury & Vehrencamp, 2011); once a critical level of network
decentralization was reached, group decision-making rapidly shifted from an
unshared to a shared consensus in which each group member had equal say
in collective decisions (Conradt & Roper, 2005). Results of these simula-
tions were very much in line with the empirical data on movement initiation
and joining decisions in a number of primate species, including: Tonkean
macaques (M. fonkeana), thesus macaques (M. mulatta), brown lemurs (E. ful-
vus fulvus), and white-faced capuchins (Cebus capucinus).

Social network structure can also influence the dynamics of permanent
group fissions, with important consequences for patterns of gene flow,
population dynamics (e.g., growth rate), colonization of new habitats,
and the potential extinction of local or regional populations (Lefebvre,
Ménard, & Pierre, 2003; Jones, 2005; Strier, Boubli, Possamai, & Mendes,
2006). For example, a population of northern muriqui monkeys (Brachyteles
hypoxanthus) located in a small forest reserve in Brazil underwent a perma-
nent fission event over the course of 2003—2005 when a subgroup broke
off from the main population (Strier et al., 2006). Tokuda et al. (2014) retro-
actively employed SNA to examine how social structure might have influ-
enced the dynamics of the fission process. Newman’s modularity method
(Newman, 2004, 2000) was used to detect subgroups of individuals within
the larger population. Modularity—i.e., the extent to which association
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occurs within, as opposed to between, subgroups—in the population
increased over time as the point of fission approached. Females that were
more peripheral to the main group—i.e., those that had relatively lower
strength and eigenvector centrality—began to associate as a separate sub-
group that eventually broke oft from the larger group (Figure 8). Ecological
factors, such as foraging competition, were implicated in the permanent split
in the female population, while the subgroup of males that subsequently
joined the new female subgroup likely did so for reproductive opportunities
(Tokuda et al., 2014). Restructuring of the social network over time during
repeated temporary fissions appears to have resulted in permanent group
division; simulation studies appear to provide support for this interpretation
(Sueur & Maire, 2014).

Initiation of collective movement cannot occur without a leader. In
contrast to our earlier discussion regarding leadership during collective nav-
igation, here we will use the term leader to refer to individuals who
attempt—successfully or unsuccessfully—to initiate group movement.
‘What characteristics are possessed by successful versus unsuccessful leaders?
Is leadership a stable role, consistently occupied by one or a few group mem-
bers, or is it a temporary position taken up by individuals based on current
knowledge or motivation? Dominance relationships or social rank appear to
influence leadership in at least some species. In feral horses (Equus ferus cab-
allus), higher-ranked individuals successfully recruited more followers when
departing from the group, and horses tended to join collective movements
in rank order (Krueger, Flauger, Farmer, & Hemelrjk, 2014). In contrast,
individual position within sociopositive social networks was not associated
with leadership success. Similarly, dominance rank was strongly associated
with successful initiation of collective movement in rhesus macaques (M.
mulatta) (Sueur & Petit, 2008).

Dominance rank is not always correlated with leadership success (e.g.,
Nagy et al., 2013). In some cases, it might be the individuals that possess
the most knowledge or experience that take up leadership roles (Couzin
et al., 2005; Bode, Franks, et al., 2012). In the bottlenose dolphin (Tursiops
spp.) population living in Doubtful Sound, New Zealand, two particular
behaviors are used to coordinate cohesive group movement on a local scale:
a side-flop to initiate travel and an upside-down lobtail maneuver to signal
cessation of movement (Lusseau, 2007). Only a subset of individuals per-
formed these group-coordinating behaviors; side-flops were only successful
when used by certain males, while upside-down lobtailing was likewise only
successful when employed by particular females. By examining the social
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Dry season 2002

Rainy season 2004-2005

Dry season 2005

Figure 8 Social networks for a northern muriqui (Brachyteles hypoxanthus) population
that underwent permanent group fission between the dry season in 2002 (a) and the
dry season in 2005 (g). Clusters of individuals detected by Newman’s modularity
method are indicated by different shading, hatching, and border width in panels
(b)—(g). Circles: adult females, squares: adult males, triangles: subadult females, and
diamonds: subadult males. Additional figure information can be found in Tokuda
et al. (2014). Reprinted with permission from: Tokuda et al. (2014). Males follow females
during fissioning of a group of northern muriquis. American Journal of Primatology, 76,
529—538. Copyright © 2014 John Wiley and Sons.
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network position of signaling and nonsignaling dolphins, it was discovered
that signalers had higher betweenness scores than nonsignalers: that is, sig-
nalers were more likely to associate with individuals in multiple subcommu-
nities. Such individuals might have possessed greater knowledge regarding
the likelihood that potential conspecific competitors were nearby or which
resource patches had recently been visited. The possibility of eavesdropping
by competitors might have resulted in greater reliance during coordination
of collective movement on these local, short-distance signals compared to
long-distance vocal communication.

Taken together, the above studies indicate that social network structure,
as well as an individual’s network position, influences individual leadership
effectiveness, joining decisions, and group decision-making style in many
species. While self-organization of group-level behavior can occur via local
rules, it can often be misleading to assume these rules are blind to the identity
of individuals with which an animal interacts. A feature worth noting in
several of the above studies is the melding of model simulations with collec-
tion of empirical data on animal collective movements (e.g., Jacobs et al.,
2011; Sueur et al., 2012). Through use of model simulations, predictions
can be generated and then compared to empirical data in order to infer
which explanation best accounts for all aspects of the data. These studies
offer excellent examples of predictive approaches using SNA. Further
work might incorporate ecological and social factors into the models to
explore their potential influence on group decision-making, as well as
compare explanatory models between species to assess whether similar or
different behavioral mechanisms are at play.

3.3 Animal Personalities

Animal personality is typically defined as consistent individual differences in
behavioral responses within and across contexts (Réale, Reader, Sol,
McDougall, & Dingemanse, 2007; Sih & Bell, 2008). Animal personality
research has typically focused on behavioral traits predicted to be ecologi-
cally relevant, such as aggression, boldness, sociability, activity level, and
explorative tendencies (Wolf & Weissing, 2012). Consistent between-
individual differences in these and other behavioral traits have been reported
for a wide range of animal taxa (Sih, Bell, & Johnson, 2010).

The existence of animal personalities is predicted to have substantial
impacts on social structure and dynamics, as well as to be influenced in
turn by social organization (Krause, James, & Croft, 2010; Wolf & Krause,
2014). Personality types have been shown to differ in the strength and



48 Matthew J. Hasenjager and Lee Alan Dugatkin

distribution of their interactions with group members and to assort with
others based on personality (e.g., Pike, Samanta, Lindstrom, & Royle,
2008; Croft et al., 2009; Aplin et al., 2013). Some personality types can
occupy prominent or influential network positions, thereby wielding
disproportionate influence over network dynamics compared to other
group members (Flack, Girvan, de Waal, & Krakauer, 2006; Modlmeier,
Keiser, Watters, Sih, & Pruitt, 2014).

Network metrics themselves might even be used to describe an individ-
ual’s social personality if an individual consistently occupies a similar
network position over time and/or across contexts (Blumstein, Petelle, &
Wey, 2013; Wilson et al., 2013). In animal personality research, traits are
usually measured in individuals under standardized conditions to ensure
the trait of interest can be kept distinct from other behavioral responses, as
well as to ensure the animal is presented with the same situation each
time it is tested (Réale et al., 2007). Variation in these measures can then
be related to behavior in naturalistic contexts. However, measurements of
social behavior within isolated dyadic interactions can often be very difterent
compared to measurements made within a realistic social environment
(Krause et al., 2010; Webster & Ward, 2011). The extent to which network
measures can be used as indicators of social personality traits presents an
interesting direction for future research.

Much work on animal personalities has centered on an individual’s
position along the bold—shy axis—that is, an individual’s tendency to act
in a risk-prone or risk-averse fashion (R éale et al., 2007). For example, bolder
individuals are more likely to approach a novel object or investigate a poten-
tial predator (e.g., Croft et al., 2009; Kurvers, Nolet, Prins, Ydenberg, & van
Oers, 2012). Variation along this axis has also been linked to fitness conse-
quences—e.g., bolder individuals may have higher reproductive success
than shy individuals, but experience decreased survival (Smith & Blumstein,
2008). The first studies to examine the links between personality variation
and network structure were done comparing network positions of bold
and shy fish. Pike et al. (2008) assayed wild-caught threespine sticklebacks
(G. aculeatus) in the lab for boldness—measured here as the latency to resume
feeding following a mild startle response—and then formed small groups of
six fish. Groups were composed of all bold individuals, all shy individuals,
or a mixture of both phenotypes. In general, as the proportion of bold indi-
viduals increased in the group, mean association strength decreased and mean
clustering coefficient increased. The clustering coefficient (Box 1) measures
the extent to which an individual’s social associates are themselves associated.
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Bold fish had weaker associations with others, but distributed those associa-
tions evenly over the rest of the group, while shy fish had a few, relatively
strong, connections focused on a small number of individuals. In mixed net-
works, bold and shy fish showed comparable patterns as above. Differences in
social network structure between groups might have been linked to the
different movement patterns expressed by bold and shy individuals. Shy
fish were far less likely to move if they were near a conspecific, possibly result-
ing in the development of strong associations between these pairs.
Conversely, bold fish did not base their movement decisions on the presence
of others. Similar results to Pike et al. (2008) have also been found in a wild
social network of guppies (P. reticulata) in that shy individuals formed stronger
associations on average than did bold fish (Croft et al., 2009).

Aplin et al. (2013) explored the link between personality and social struc-
ture in a wild population of great tits (P. major). Tits were outfitted with pas-
sive integrated transponder (PIT) tags that could be read by automated
recording equipment setup on artificial feeders placed throughout the
woods. This allowed for continuous passive monitoring of social structure
in these flocks based on co-occurrence at feeding stations. A subset of the
PIT-tagged population were captured and then tested in a captive environ-
ment to assess their exploration tendencies—used as a proxy for the extent to
which individuals were risk-prone fast explorers or risk-averse slow
explorers—before being released back into the wild. The cofeeding
network derived from joint feeder arrivals demonstrated nonrandom social
structure that was associated with variation in personality types (Figure 9(a)).
Fast explorers were found to have higher degree and betweenness and
weaker association strength than slow explorers: that is, fast explorers had
more numerous, but weaker social contacts than slow explorers and were
more likely to move between flocks (Figure 9(b) and (c)). These results
remained significant after controlling for difterences between personality
types in movement patterns and space use. Temporal stability in association
patterns was also linked to personality, with slow explorers having a higher
likelihood of remaining with prior associates—especially with other slow
explorers—while fast explorers had more unstable associations. Bonds
between two fast explorers were often especially weak and unstable. While
female birds did not assort by personality, male birds preferred to associate
with individuals that had similar personality types to themselves.

The work reviewed thus far has demonstrated a correlation between an
individual’s personality type and their network position, as well as between
behavioral variation at the population level and overall network structure.
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Future work might explore the links between personality type and dynamic
processes taking place over the network, as well as how the relative mixture
of personalities within a group influences emergent phenomena. For
example, prior work has demonstrated differences in how individual person-
ality influences use of social information (e.g., Kurvers et al., 2010; Trompf
& Brown, 2014). Techniques such as NBDA could be used to explore how
different personality types affect information transmission through a
network. In Aplin et al.’s (2013) bird population, for example, information
might flow most efficiently between slow-exploring birds and their tightly
linked associates, while fast explorers might play an important role in trans-
mitting information between different flocks. If the behavior of shy individ-
uals results in the formation of small, tightly linked clusters, those subgroups
may be buffered from exposure to pathogens, as well as find it easier to
maintain cooperative relationships. In contrast, bolder animals could indi-
vidually have faster access to new social information and thus be able to capi-
talize more quickly on social opportunities or obtain better access to
resources. Individuals might even attempt to select or modify their social
environment to best take advantage of these potential benefits or to shield
themselves from social costs (e.g., Oh & Badyaev, 2010).

A hallmark of self-organized collective movement is that if individual
behavior is consistent, then collective group formations will reassemble
into the same form (statistically speaking) following perturbation (Couzin
etal., 2002). An intriguing parallel might exist when considering the inter-
actions between social structure and dynamics and animal personalities. We
have seen above how personality type is linked to social network structure
and temporal dynamics, as well as how it might influence processes occur-
ring over the network. We might then predict that a given mixture of per-
sonality types, whether in one group or over multiple groups, will
consistently give rise to the same social structure and its associated proper-
ties, with important evolutionary implications—particularly if personality
and/or network position is heritable (e.g., Dingemanse, Both, Drent,
van Oers, & van Noordwijk, 2002; Dingemanse et al., 2009; Fowler,
Dawes, & Christakis, 2009). Social organization can also influence
the emergence of personalities, whether via frequency-dependent selec-
tion, social niche specialization, or reputation building (Wolf & Weissing,
2010). Future work might, therefore, examine whether separate popula-
tions embark on independent trajectories as their social structure influences
the emergence of individual personalities and, consequently, the eventual
mixture of personality types at the population level. Alternately,
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independent populations might instead converge on one or more stable
behavioral mixtures.

3.4 Cooperation

Although evolutionary biologists have been interested in cooperation and
altruism ever since Darwin (Dugatkin, 2006), only recently have these sub-
jects been addressed from a social network perspective (Nowak & May,
1992; Nowak & Sigmund, 1992; Nowak, Tarnita, & Antal, 2010; Wilson,
Pollock, & Dugatkin, 1992). In a widely cited study, Ohtsuki, Hauert,
Lieberman, and Nowak (2006) found that cooperation in a structured pop-
ulation can persist if b/c > k, where b is the benefit of a cooperative act
received by any who are connected to the cooperator, ¢ is the cost to the
cooperator for the act, and kis the average degree of the network (Figure 10).
Their “rule” indicates that cooperation is favored when individuals possess
only a small number of social ties. Santos, Pacheco, and Lenaerts (2006a)
found similar results; a heterogeneous social network promoted the persis-
tence of cooperation. This occurred even in the presence of ties that con-
nected otherwise “socially distant” individuals, thereby allowing clusters
of cooperators to be more easily invaded by defectors. Turning to real-life
networks, simulations using 70 nonhuman primate social networks found
that primate social structure often—though not always—facilitated cooper-
ation (Voelkl & Kasper, 2009).

Figure 10 Each individual obtains a payoff (P) derived from interactions with its
network neighbors. Cooperators (C) pay a cost, ¢, for each neighbor to receive a benefit,
b. Defectors (D) pay no costs, nor provide any benefits. At each time step, a random
individual dies—denoted in the figure by the node marked “?”. Neighbors of the
now-vacant node compete to occupy it with their offspring, with success proportional
to individual fitness. Individual fitness is given by 1 — w + wP, where w is the strength of
selection. Reprinted by permission from Macmillan Publishers Ltd from: Ohtsuki et al.
(2006). A simple rule for the evolution of cooperation on graphs and social networks.
Nature, 441, 502—505. Copyright © 2006.
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If cooperators are capable of assorting with other cooperators and avoid-
ing defectors, cooperation can persist even in networks with higher levels of
overall connectedness. For example, Santos, Pacheco, and Lenaerts (2006b)
found that cooperation was better able to persist when individuals were able
to swiftly modify their local network in response to defection. Given that
animals are often likely to have some influence over their network connec-
tions, we might expect to observe such assortative patterns in the wild (e.g.,
Croft et al., 2000). In general, mechanisms that allow for assortment favor
the evolution of cooperation and altruism (Wilson & Dugatkin, 1997;
McNamara & Leimar, 2010; Nowak et al., 2010).

Cooperation can also be favored by selection when policing behavior
that punishes defectors and/or maintains group stability is in place (Foster
& Ratnieks, 2001; Ratnieks & Wenseleers, 2005). Flack et al. (2006) used
SNA to study policing by male pig-tailed macaques (Macaca nemestrina).
Social networks for grooming, play, contact sitting, and proximity were
recorded for a captive macaque group. Subsequently, three high-ranking
males who were known to engage in impartial, third-party conflict inter-
ventions were repeatedly removed from the group and social networks
were again recorded. When these males were absent, aggressive behaviors
became more common and affiliative behaviors less so (Flack, Krakauer,
& de Waal, 2005). Their removal also contributed to several structural mod-
ifications in the social networks (Flack et al., 2006). Mean reach—i.e.,
the number of nodes two or fewer steps away from the focal individual
(Box 1)—and mean degree decreased for play and grooming networks,
mean clustering coefficient increased for proximity networks, and macaques
were more likely to assort by degree in play, grooming, and contact-sitting
networks. Taken together, these structural changes suggest that in the
absence of policing behavior, animals adjusted their social networks in a
manner consistent with theoretical predictions regarding the maintenance
of cooperation by maintaining a smaller and less diverse network of connec-
tions (Ohtsuki et al., 2006; Santos et al., 2006a). While cooperative behav-
iors per se were not explicitly studied by the authors, their work offers an
intriguing example of how behavior can modify the social network in
ways that can either facilitate or inhibit cooperative relationships.

Coalitions involve two or more individuals cooperating with one another
during potentially costly competitive or aggressive interactions (de Waal &
Harcourt, 1992). Using a long-term data set on chimpanzee (P. troglodytes)
troops in Gombe National Park, Tanzania that contains both behavioral
and genetic records, Gilby et al. (2013) used SNA to investigate the potential
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fitness benefits of coalitionary behavior for male chimpanzees. They found
that reproductive success was significantly and positively correlated with in-
dividual betweenness in the coalitionary network—that is, males that had
numerous coalition partners that were not themselves allied with one another
sired more offspring and were more likely to rise in social rank.

Alliances, defined as long-term coalitionary relationships, are common in
bottlenose dolphins (Tursiops spp.) (Connor, 1992; Connor et al., 1992;
Connor et al., 1999; Wiszniewski, Brown, & Moller, 2012). In some pop-
ulations, male dolphins will form associations with one to a few other males
in order to gain access to females, either by cooperatively herding them or by
stealing females from other male alliances. In some cases, second- and even
third-order alliances have been observed in which multiple smaller alliances
join together into one superalliance (Connor et al., 1999). Wiszniewski et al.
(2012) used SNA to examine alliance structure in a dolphin population near
Port Stephens, Australia in which males often form strong, long-lasting
bonds with one to three other males, while females have a weaker and
more dispersed social structure. Male alliance composition was recorded
over an 8-year period and analyzed in 2-year increments. While most
males—i.e., 69—80%—in a given 2-year period were part of an alliance,
the relative stability of these alliances varied greatly. Some lasted for
the entire eight years of the study, while others lasted for less than two.
Wiszniewski et al.’s (2012) analysis found that a male’s social network posi-
tion was linked to alliance stability. Members of stable alliances maintained
particularly tight connections within their alliance, but had very few associ-
ations outside it. Conversely, members of less stable alliances maintained a
large contact network in the general population. The causes and functional
consequences of this variation in alliance structure and stability, however,
remain unknown.

A large body of theoretical work now exists exploring the evolution of
cooperation in structured populations and providing many predictions ripe
for empirical testing (see Nowak et al., 2010). Relatively less work has been
done in free-living animal groups, with many questions yet to be answered.
SNA provides an integrated framework that allows researchers to explore
both the outcomes of cooperation on social behavior and population struc-
ture, as well as predict the likelihood of future cooperation given informa-
tion about a population’s social network. For example, theoretical work has
associated particular structural elements with either facilitating or inhibiting
the emergence and maintenance of cooperation (e.g., Ohtsuki et al., 20006;
Santos et al., 2006a). The presence of these elements in animal populations
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allow for predictions to be made regarding the likelihood of observing coop-
eration. Comparative studies of social structure between species that differ in
their cooperative relationships might also help to answer such questions
(e.g., McDonald, 2007; Ryder, McDonald, Blake, Parker, & Loiselle,
2008). The outcomes of cooperative behaviors can also be studied using a
social network approach. When cooperation—or a lack of it—is observed
between two individuals, we might predict their social relationship will
change as a result, as might their relationship with any potential eavesdrop-
pers. Cooperation might be more likely in the presence of eavesdroppers,
especially if those eavesdroppers are well connected. Development of
dynamic network models—e.g., time-ordered networks (Blonder et al.,
2012)—should shed some light on these questions by allowing us to
examine how individuals shift their behavior based on social context and
“rewire” their network connections over time.

Social responsiveness—the likelihood of an individual adjusting its
behavior according to past interactions with particular individuals—is pre-
dicted to facilitate cooperation when past transgressions are remembered,
thereby providing one mechanism by which cooperators can assort with one
another and “rewire” their social ties (McNamara, Stephens, Dall, & Houston,
2009; McNamara & Leimar, 2010). If defectors can be identified from prior
direct experience, or via eavesdropping on past interactions, socially respon-
sive individuals can adjust their behavior during future interactions with
known defectors. Alternately, socially responsive individuals can facilitate
cooperative behavior by threatening to terminate interactions with cheaters
and seek out a more favorable social partner (McNamara & Leimar, 2010).
At the same time, personality differences between population members are
predicted to result in socially responsive individuals (Wolf & Woeissing,
2010; Wolft & Krause, 2014). Such responsiveness will only be favored if:
(1) behavioral variation is present, and (2) past behavior of a potential social
partner can in part predict their future behavior—i.e., they exhibit behavioral
consistency (Wolf, van Doorn, & Weissing, 2011). As such, the composition
of personality types within a population is predicted to influence the extent to
which social responsiveness is favored. This suggests the presence of at least
two potential pathways by which the mixture of personality types within a
population can influence cooperative behavior: (1) by influencing social
network structure in ways that facilitate or inhibit cooperative behavior
(e.g., Ohtsuki et al., 2006; Santos et al., 2006a), or (2) by influencing the level
of social responsiveness (e.g., Santos et al., 2006b; McNamara & Leimar,
2010). However, when socially responsive individuals change their future
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behavior based on past interaction, this can be reflected by structural changes
in their local network, as well as population-level shifts in social structure.
Since social structure is also likely to influence the development of individual
personalities (Wolf & Weissing, 2010; Montiglio et al., 2013), this would sug-
gest a potential feedback loop between social network structure, the behav-
ioral composition of the population, social responsiveness, and the emergence
or maintenance of cooperation. These potential links present an intriguing
direction for future research.

4. FUTURE DIRECTIONS FOR SOCIAL NETWORK
ANALYSIS IN BEHAVIORAL ECOLOGY

Until recently, much of SNA in nonhuman systems has dealt with
how best to describe social structure in terms of interaction patterns,
preferred and avoided relationships, assortment of individuals within the
network, and delineating substructures within the larger global structure.
Less attention has been paid to the “why” of these topics. What influences
tie formation or dissolution? What ecological and social factors influence
network dynamics and structure? How does social structure change over
different timescales? What aftect does social structure have over processes
that occur on the network? What are the mechanisms by which social
network position influences behavior, and what is the functional significance
of both an individual’s position in the network and of overall population
structure? While several of the studies we have discussed in this review
have begun to provide answers to some of these questions, a great deal of
work remains to be done.

A general call has recently been sounded to move SNA in behavioral
ecology away from a predominately descriptive framework toward a more
predictive one that seeks to explore the functional consequences of network
structure and dynamics for the evolutionary ecology of social behavior
(Hobson, Avery, & Wright, 2013; Bradbury & Vehrencamp, 2014;
Pinter-Wollman et al., 2014; Wilson et al., 2014). Pinter-Wollman et al.
(2014) provide an excellent review of recent advances in technology, analyt-
ical methods, and conceptual thinking in SNA. To avoid treading old
ground, we refer the interested reader to their comprehensive coverage
and will instead focus on two topics—comparative approaches and dynamic
networks—that we feel have particular relevance for the subject areas we
have addressed in this review.
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4.1 Comparative Approaches

Comparative studies are a powerful method for assessing ecological and
evolutionary hypotheses (Harvey & Pagel, 1991). Since social structure is
derived from behaviors shaped via natural selection, it is predicted to reflect
selective pressures and phylogenetic history (e.g., Sundaresan, Fischhoft,
Dushoff, & Rubenstein, 2007; Kelley et al., 2011). However, network com-
parisons are often not straightforward, particularly when networks vary in
size and connectedness (Croft et al., 2008). Many measures, such as path
length and the clustering coetficient, vary with the number of nodes and
edges in the network, and can be biased by sampling error. Following Croft
et al. (2008), when networks of a similar size and density cannot be
compared, network measures can be rescaled prior to comparison or, if
the goal is to compare the network position of individuals or classes of
individuals between networks, the ranks of a network measure can be
used instead of its actual values. Alternately, network comparisons can
make use of models that either control for network size, density, and other
structural features (e.g., Watts & Strogatz, 1998), or that can parameterize a
network’s structure so that those parameters can be compared instead
between networks (e.g., Faust & Skvoretz, 2002).

Even when measures of global network structure cannot be compared
directly between networks, it can still be highly informative to compare
smaller-scale network patterns and the social dynamics that inform network
structure. To that end, here we briefly discuss two recently applied tech-
niques—Markov chain network models and motif analysis—that we hope
will facilitate further comparative analyses and offer fresh insights into
many of the topics we have previously discussed.

Transition probabilities from Markov chain models can be directly
compared between populations and species to explore how the underlying
behavioral dynamics that result in social structure are influenced by ecolog-
ical context and evolutionary history (Figure 4) (Wilson et al., 2014). While
this approach is very new, it offers the tantalizing combination of allowing
comparisons to be made regarding both the dynamics leading to network
formation—i.e., the transition probabilities—as well as the processes that
act over the network itself (see Section 3.1.3).

While these models were initially applied in behavioral ecology toward
understanding shoaling decisions in freshwater fish, they can be modified
and applied to other behaviors, including foraging, mating, and agonistic
interactions. More complex models could incorporate multiple types of
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behavior at once, facilitating exploration of how behavioral processes are
influenced by different forms of social behavior. For example, in principle,
a model combining proximity patterns with agonistic interactions could be
used to describe the effects of social eavesdropping and/or audience effects
on dominance interactions in freely interacting animal groups. In practical
terms, a different set of transition probabilities might govern agonistic inter-
actions when individuals are in the presence of an audience and/or potential
eavesdroppers as compared to when third-party individuals are absent.
Agonistic networks could be simulated from models that take these third-
party effects into account and compared with networks generated from
models that ignore them to highlight their structural consequences.
Comparative analyses using such models might reveal important evolu-
tionary or ecological influences on the prevalence or importance of eaves-
dropping or audience effects in different environments, populations, or
species. Networks generated from these Markov chain models might also
be searched for structural aspects associated with the behavioral process of
interest; motif analysis might prove helpful in this regard (see below).

Animals are embedded in multiple social networks, each of which might
influence the others (e.g., Pearl & Schulman, 1983; Flack et al., 2006;
Barrett, Henzi, & Lusseau, 2012). Creating composite Markov chain models
that incorporate two or more types of social behavior simultaneously—e.g.,
agonistic, sexual, and/or affiliative interactions—would allow researchers to
take such network dependencies into account. Markov chain models could
be constructed for each behavior separately, as well as for each combination
of behaviors. Networks could then be generated from these models to assess
the influence of different social behaviors on population structure; compar-
isons with empirical data could be used to infer which behaviors were most
important for driving observed patterns.

Motif analysis has recently been applied toward understanding the struc-
tural components of animal social networks (Faust, 2006, 2007, 2010;
Shizuka & McDonald, 2012; Ilany, Barocas, Koren, Kam, & Geffen,
2013; McDonald & Shizuka, 2013). Motif analysis deconstructs a network
into subcomponents (e.g., triad configurations, see Figure 11), the relative
frequencies of which can be compared across networks (Milo et al., 2002;
Milo et al., 2004). Certain subcomponent configurations are predicted to
facilitate specific network processes and properties such as information pro-
cessing (Waters & Fewell, 2012) and stable dominance hierarchies (Shizuka
& McDonald, 2012). Comparison of the relative frequencies of those con-
figurations across populations might be used to infer the importance of
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Figure 11 Examples of triad configurations with no symmetrical relationships—i.e., no
double-headed arrows. Reprinted with permission from: Shizuka and McDonald (2012).
A social network perspective on measurements of dominance hierarchies. Animal
Behaviour, 83, 925—934. Copyright © 2012 Elsevier.

certain processes in a population and their consequences for group function.
Care must be taken in comparative analyses to control for differences in
dyadic connection patterns, as these constrain the possible configurations
for higher-level three- and four-node subcomponents (Faust, 2006, 2007,
2010); within these constraints, however, significant departures from
expected frequencies can be informative. In other cases, the expected fre-
quency of particular subcomponent configurations is independent of group
size (e.g., Shizuka & McDonald, 2012), making motif analysis an attractive
option for network comparisons.

Motif analysis is best used with directed interactions (Box 1, Pinter-
Wollman et al., 2014). A challenge will be to identify potential instances
of directed interaction when “direction” is not obvious. In some cases,
direction is clear, such as when two animals engage in an agonistic contest
during which one individual emerges victorious. It is not as obvious in other
cases: for example, individual A might exert influence on both individuals B
and C during their agonistic interaction—e.g., A creates an audience effect.
In this case, it might be difficult to identify this directed influence from A on
individuals B and C, particularly in freely interacting groups. Nevertheless,
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the emphasis motif analysis places on relationship patterns above the dyadic
level—e.g., triadic—suggests it might be fruitfully applied toward the study
of audience effects, eavesdropping, and other aspects of communication net-
works that are not often explicitly tackled by SNA. Technological advances
allowing for greater monitoring of signaling interactions within a wider
community—e.g., microphone arrays recording songbird interactions
(Foote, Fitzsimmons, Mennill, & Ratcliffe, 2010)—could be especially help-
ful in this regard.

Motif analysis of leader—follower relationships could allow researchers to
assess the extent to which the leadership hierarchy in an animal group is
dominated by transitive or cyclical relationships, with potentially important
implications for group function. For example, if leader—follower interaction
patterns are dominated by cyclical triads, greater leadership or navigational
tendencies might be required for effective group navigation. Benefits of
group cohesion might select for transitive, stable leadership patterns even
when no clear asymmetries exist in individual ability, experience, or infor-
mation (Krause & Ruxton, 2002; McDonald & Shizuka, 2013). Similarly,
the effectiveness of collective navigation has been linked to the frequency
of particular four-node motifs (Bode, Wood, et al., 2012). Comparisons
of the frequency of different leadership subcomponent configurations in
various environments, or between different species, might reveal ecological
or evolutionary influences on aspects of collective animal behavior.

Motif analysis 1s currently constrained primarily to censuses of three- and
four-node subcomponents. This is because the number of possible configu-
rations of a subcomponent increases exponentially with the total number of
nodes making up that subcomponent. Analysis of subcomponents larger
than about four nodes is therefore computationally prohibitive (Pinter-
Wollman et al., 2014). However, as long as subcomponents are biologically
meaningful—e.g., as when transitive triads indicate stable dominance rela-
tionships—their size may not be particularly important.

4.2 Dynamic Networks

A population’s social network structure is rarely static, changing often as the
result of demographic processes and behavioral responses to both external
and internal changes. Despite widespread recognition of this fact, the
dynamics of network topology have generally been neglected in the behav-
ioral ecology literature (Blonder et al., 2012; Hobson et al., 2013; Pinter-
Wollman et al., 2014). Most studies are based on a single, static network
constructed from observed interactions and associations accumulated over
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some time span—i.e., a time-aggregated network. When temporal network
dynamics have been considered, this has generally been accomplished by
comparing a series of time-aggregated networks, each of which was
compiled over some interval of interest—e.g., seasons or years. Methods
are available to study such longitudinal changes in network structure and
to identify the factors influencing the probabilities of individuals changing
their social relationships over time (e.g., Croft et al., 2008; Snijders et al.,
2010; Pinter-Wollman et al., 2014), though these methods have been infre-
quently applied in behavioral ecology.

Many processes, including information flow, disease transmission, and
cooperative interactions, can occur over timescales much shorter—e.g., sec-
onds to minutes—than a longitudinal approach using time-aggregated net-
works can address (Waters & Fewell, 2012). What’s more, network processes
and topological changes to network structure might occur over similar time-
scales and interact with each other in feedback loops. Knowledge of the
temporal sequence of interactions is particularly important if one suspects
that such feedback loops are at work (Blonder et al., 2012). For example,
an animal that becomes infected with parasites might modify its behavior,
or others might modify their behavior toward it by attempting to avoid
that individual; these changes influence the subsequent likelihood of disease
transmission through the population (e.g., Croft et al., 2011). This sort of
feedback has been modeled using “adaptive” or “coevolutionary” networks
(Gross & Blasius, 2008), but has rarely been addressed in empirical studies on
animal groups. Reciprocal feedbacks between network structure and flow
dynamics might be best analyzed via time-ordered network models (Blonder
et al., 2012; Pinter-Wollman et al., 2014).

Time-ordered analyses maintain data in time-stamped streams of
observations, keeping a continuous record of the order, timing, and duration
of interactions (Figure 12(a)). With this information in hand, it is possible to
trace potential transmission pathways that take into account the actual order
in which interactions occurred, as well as directly observe topological changes
in the network (Blonder et al., 2012). Furthermore, aggregating interaction
data over intervals can break the data stream down into a series of traditional
time-aggregated networks (Figure 12(b)). Time-ordered network models are
especially well suited for investigating transmission processes; researchers can
use these models to: identify permitted pathways of flow, determine the rela-
tive importance of individuals in terms of their influence over these processes,
and estimate the speed and efficiency of transmission within the network.
While behavioral ecology has only recently begun to make use of these
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Figure 12 (a) A time-ordered network in which the precise sequence of interactions
between individuals can be seen as time progresses. (b) Time-aggregated networks
derived from the time-ordered data over specified intervals of time. Reprinted with
permission from: Blonder et al. (2012). Temporal dynamics and network analysis. Methods
in Ecology and Evolution, 3, 958—972. Copyright © 2012 John Wiley and Sons.

models (e.g., Blonder & Dornhaus, 2011), they have been used more exten-
sively in a number of other fields, including physics (e.g., Kostakos, 2009;
Holme & Saramaiki, 2012), engineering (e.g., Kuhn & Oshman, 2011),
and the computer sciences (e.g., Kempe, Kleinberg, & Kumar, 2002; San-
toro, Quattrociocchi, Flocchini, Casteigts, & Amblard, 2011). Their use in
behavioral ecology is likely to become more common in the future given
parallel advancements in technology that allow researchers to continuously
track individual animals. Social association data can now be collected auto-
matically at high spatial and temporal resolution—e.g., via GPS devices or
PIT systems (Aplin et al., 2013; Krause et al., 2013; Farine et al., 2014
Strandburg-Peshkin et al., 2014).

Time-ordered network analyses could be used to complement and offer
further insight into many of the topics we have discussed in this review. For
example, during collective motion and navigation, links can be formed as
individuals move toward one another and dissolve as they move apart. Passive
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mechanisms, such as individual body condition, can influence spatial location
within a moving group; if animals repeatedly interact with the same individ-
uals during these movements, passive associations might transform into active
social preferences (Bode et al., 2011a). An examination of time-ordered data,
as well as the time-aggregated networks that can be derived from it, could
reveal whether accumulated short-term interactions during collective motion
can facilitate development of more stable, long-term associations, and poten-
tially cast light on the mechanisms by which this could occur.

Time-ordered networks might also be useful for assessing the influence
of perturbations—e.g., changes in group composition, the arrival of a pred-
ator, or anthropogenic disturbances—on network structure and dynamics.
An intriguing possibility that could be addressed with these techniques is
whether there is variation in the extent to which individuals modify their
social connections in response to perturbation. Some individuals might be
very socially reactive, frequently and quickly moditying their social connec-
tions according to changing conditions or internal physiology, while others
might be more socially stable and attempt to maintain the same pattern and/
or intensity of connections regardless of context.

5. CONCLUSION

Starting from the musings and keen observations of naturalists and
other early thinkers, the study of animal social structure and behavior has
transformed over time, drawing concepts and techniques from fields as
diverse as ecology, mathematics, sociology, statistical physics, evolutionary
theory, and behavioral ecology. Animal SNA is now a vibrant, integrative
discipline in which new insights are being generated monthly, allowing
for a deeper and more holistic understanding of social structure and behavior
than ever before. We have shown in this review how SNA has enriched our
knowledge of behavioral ecology, as well as contributed to our understand-
ing of many other fields. The origins of culture, the age-old problem of
cooperation, and how complex, emergent group phenomena arise from
individual behavior can only be fully understood when they are embedded
within an explicit social context. New technologies melded with theoretical
and statistical advances are expanding the horizons of SNA and taking it in
novel directions at an impressive rate. We eagerly look forward to the
exciting new insights sure to develop from these endeavors in the coming
decades and beyond.
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